Noise Monitoring Services
(Wexford Wind Farms) – Lot 1

Ballycadden Wind Farm Noise Monitoring Report
Noise Monitoring Services

(Wexford Wind Farms) – Lot 1

Ballycadden Wind Farm Noise Monitoring Report

Document Control Sheet

<table>
<thead>
<tr>
<th>Client:</th>
<th>Wexford County Council</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title:</td>
<td>Noise Monitoring Services (Wexford Wind Farms) – Lot 1</td>
</tr>
<tr>
<td>Document Title:</td>
<td>Ballycadden Wind Farm Noise Monitoring Report</td>
</tr>
<tr>
<td>Document No:</td>
<td>MGE0552RP0007</td>
</tr>
</tbody>
</table>

Text Pages: 74
Appendices: 1

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Status</th>
<th>Date</th>
<th>Author(s)</th>
<th>Reviewed By</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>F01</td>
<td>Final</td>
<td>26th June 2017</td>
<td>RMcK</td>
<td>EMcK</td>
<td>GMcE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CMcG</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EMcK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copyright RPS Group Limited. All rights reserved.

The report, including appendices, is intended for our client and contains confidential and/or legally privileged information. The report has been prepared for the exclusive use of our client and unless otherwise agreed in writing by RPS Consulting Engineers Limited. No other party may use, make use of or rely on the contents of this report.

The report has been compiled using the resources agreed with the client and in accordance with the scope of work agreed with the client. No liability is accepted by RPS Consulting Engineers Limited for any use of this report, other than the purpose for which it was prepared.

RPS Consulting Engineers Limited accepts no responsibility for any documents or information supplied to RPS Group Limited by others and no legal liability arising from the use by others of opinions or data contained in this report. It is expressly stated that no independent verification of any documents or information supplied by others has been made.

RPS Consulting Engineers Limited has used reasonable skill, care and diligence in compiling this report and no warranty is provided as to the report’s accuracy.

No part of this report may be copied or reproduced, by any means, without the written permission of RPS Consulting Engineers Limited.
TABLE OF CONTENTS

1 **INTRODUCTION** .. 1
 1.1 **PROJECT SCOPE** .. 1

2 **NOISE CRITERIA** ... 2
 2.1 **THRESHOLDS FOR COMPLIANCE AND NUISANCE** .. 2
 2.1.1 Compliance with Planning Permission ... 2
 2.1.2 Nuisance Threshold .. 2
 2.2 **BALLYCADDEN WIND FARM PLANNING PERMISSION** ... 3
 2.3 **EIS NOISE IMPACT ASSESSMENT** .. 3
 2.4 **WEXFORD COUNTY DEVELOPMENT CONTROL STANDARDS FOR WIND FARMS (2007)** ... 4
 2.5 **WIND ENERGY DEVELOPMENT GUIDELINES, 2006** ... 5
 2.6 **INTERNATIONAL GUIDANCE AND REGULATIONS** ... 6
 2.6.1 UK Guidelines .. 6
 2.6.2 Recent Developments in UK Guidance .. 7
 2.6.3 South Australia .. 8
 2.6.4 Denmark ... 8
 2.6.5 Canada ... 9
 2.7 **WORLD HEALTH ORGANISATION NOISE GUIDELINES FOR NIGHT TIME NOISE** 10
 2.8 **INTERNATIONAL PRACTICE - NOISE MEASUREMENT LOCATIONS** 10
 2.9 **INTERPRETATION OF COMPLIANCE THRESHOLDS** ... 10
 2.10 **PRESENCE OF TONES, LOW FREQUENCIES, AMPLITUDE MODULATION** 11
 2.10.1 Tones .. 11
 2.10.2 Low Frequency Noise .. 12
 2.10.3 Amplitude Modulation ... 13
 2.11 **THE LIKELIHOOD OF NOISE NUISANCE** ... 15

3 **MONITORING METHODOLOGY AND DATA COLLECTION** .. 16
 3.1 **SITE LOCATION** .. 16
 3.2 **PREVIOUS NOISE MONITORING DATA** .. 16
 3.3 **MONITORING METHODOLOGY** ... 16
 3.4 **INSTRUMENTATION** .. 16
 3.5 **NOISE MONITORING LOCATIONS FOR THIS REPORT** .. 17
 3.5.1 Site 06 and Site 14 ... 17
3.5.2 Ballycadden Specific Locations ... 17
3.6 WEATHER DATA ... 19
3.7 WIND FARM OPERATIONAL DATA ... 19
3.8 CONFIRMATION OF SPECIFIC EVENTS ... 19
3.9 NOISE LOGS .. 19
3.10 LONG-TERM NOISE MONITORING ... 19
3.11 ATTENDED MONITORING ... 20
4 NOISE MODEL ... 21
 4.1 MODEL PARAMETERS .. 21
 4.2 MODEL DATA .. 21
 4.3 MODEL RESULTS ... 23
 4.3.1 Site 08 .. 23
 4.3.2 Site 09 .. 24
 4.3.3 Site 10 .. 24
 4.3.4 Site 11 .. 25
 4.3.5 Site 12 .. 26
 4.3.6 Overall Modelling Results .. 27
5 DATA ANALYSIS ... 28
 5.1 CALIBRATION .. 28
 5.2 DATA QUALITY CONTROL .. 28
 5.3 DATA VALIDATION ... 29
 5.3.1 Filtering non-Wind Farm Noise .. 29
 5.4 FUNDAMENTAL PARAMETERS .. 31
 5.4.1 L_{eq} or L_{A90} ... 31
 5.5 TONAL ANALYSIS .. 33
 5.6 LOW FREQUENCY NOISE .. 34
 5.7 AMPLITUDE MODULATION ... 34
 5.7.1 Benchmarking RPS Matlab Implementation of IoA Method for Rating AM 35
 5.7.2 AM Signal Processing .. 35
 5.7.3 AM Code Validation Results ... 35
 5.7.4 Additional filtering on Amplitude Modulation Data 36
6 RESULTS ... 38
 6.1 PERIODS EXAMINED .. 38
 6.2 WEATHER DATA ... 38
6.2.1 Wind speed and direction ... 40
6.3 NOISE LOGS .. 41
6.4 ATTENDED MONITORING ... 41
6.5 LIMITS BASED ON EIS STATEMENTS ... 42
 6.5.1 Compliance ... 42
 6.5.2 Compliance with Prediction Curves of the EIS 43
 6.5.3 Site 08 .. 43
 6.5.4 Site 09 .. 44
 6.5.5 Site 10 ... 44
 6.5.6 Site 11 ... 45
 6.5.7 Compliance with the WCDCSWF .. 46
6.6 DECLG WIND ENERGY DEVELOPMENT GUIDELINES 47
6.7 INTERNATIONAL GUIDANCE AND OTHER STANDARDS 47
 6.7.1 UK ... 47
 6.7.2 South Australia ... 50
 6.7.3 Canada and Denmark .. 56
6.8 WORLD HEALTH ORGANISATION NOISE GUIDELINES FOR NIGHT TIME NOISE 62
6.9 TONAL ANALYSIS ... 62
 6.9.1 Attended Tonal Noise Measurements 63
 6.9.2 Unattended Tonal Noise Measurements 64
6.10 LOW FREQUENCY NOISE .. 65
6.11 AMPLITUDE MODULATION ... 65
6.12 LIKELIHOOD OF NOISE NUISANCE (UNDER S.108 OF THE EPA ACT, 1992) 68
7 CONCLUSIONS ... 70
7.1 PLANNING COMPLIANCE .. 70
7.2 COMMENTARY RELATING TO OTHER GUIDELINES AND STANDARDS ... 71
 7.2.1 WEDG (2006) ... 71
 7.2.2 UK ... 71
 7.2.3 South Australian ... 71
 7.2.4 Canada and Denmark .. 71
 7.2.5 World Health Organisation .. 71
 7.2.6 Tonal Analysis ... 71
 7.2.7 Low Frequency Noise .. 72
 7.2.8 Amplitude Modulation ... 72
7.2.9 Likelihood of Noise Nuisance as per Section 108 of the EPA Act No. 7 of 1992 72

7.3 SUMMARY ... 72

8 REFERENCES ... 74

APPENDICES

Appendix A Calibration Certificates

LIST OF FIGURES

Figure 2.1: UK DECC Proposed AM Level Penalty Scheme ... 15
Figure 3.1: Noise Monitoring Areas ... 18
Figure 4.1: Noise Prediction Plot at 10m/s wind speed ... 22
Figure 5.1: Occurrence of tones as defined in Section 3.6 .. 30
Figure 5.2: Average number of seconds within a 10 minute period with low frequency noise 31
Figure 5.3: Statistical comparison of L_{eq} and L_{A90} at Site 03 ... 32
Figure 5.4: Statistical comparison of L_{eq} and L_{A90} at Site 13 .. 33
Figure 6.1: Met Eireann windrose for Rosslare station 1957-1996 .. 39
Figure 6.2: Windrose of Ballycadden weather data (all turbines all time) 40
Figure 6.3: Site 08 L_{A90}-BG compared to EIS Trendline (Location H39) 43
Figure 6.4: Site 09 L_{A90}-BG compared to EIS Trendline (Location H49) 44
Figure 6.5: Site 10 L_{A90}-BG compared to EIS Trendline (Location H14) 44
Figure 6.6: Site 11 L_{A90}-BG compared to EIS Trendline (Location H25) 45
Figure 6.7: Site 08 Corrected L_{A90} against UK ETSU guidelines .. 48
Figure 6.8: Site 09 Corrected L_{A90} against UK ETSU guidelines .. 48
Figure 6.9: Site 10 Corrected L_{A90} against UK ETSU guidelines .. 49
Figure 6.10: Site 11 Corrected L_{A90} against UK ETSU guidelines .. 49
Figure 6.11: Site 12 Corrected L_{A90} against UK ETSU guidelines .. 50
Figure 6.12: Site 08 L_{eq} data against background noise levels and South Australian guidelines 51
Figure 6.13: Site 08 Corrected L_{eq} against South Australian guidelines 51
Figure 6.14: Site 09 L_{eq} data against background noise levels and South Australian guidelines 52
Figure 6.15: Site 09 Corrected L_{eq} against South Australian guidelines 52
Figure 6.16: Site 10 L_{eq} data against background noise levels and South Australian guidelines 53
Figure 6.17: Site 10 Corrected L_{eq} against South Australian guidelines 53
Figure 6.18: Site 11 L_{eq} data against background noise levels and South Australian guidelines 54
Figure 6.19: Site 11 Corrected L_{eq} against South Australian guidelines 54
Figure 6.20: Site 12 L_{eq} data against background noise levels and South Australian guidelines 55
Figure 6.21: Site 12 Corrected L_{eq} against South Australian guidelines 55
Figure 6.22: Site 08 L_{eq} data against Danish guidelines ... 57
Figure 6.23: Site 08 L_{A90} minus BG noise + 3dB data against Danish guidelines 57
Figure 6.24: Site 09 L_{eq} data against Danish guidelines ... 58
Figure 6.25: Site 09 L_{A90} minus BG noise + 3dB data against Danish guidelines 58
Figure 6.26: Site 10 L_{eq} data against Danish guidelines ... 59
Figure 6.27: Site 10 L_{A90} minus BG noise + 3dB data against Danish guidelines 59
Figure 6.28: Site 11 L_{eq} data against Danish guidelines ... 60
Figure 6.29: Site 11 L_{A90} minus BG noise + 3dB data against Danish guidelines 60
REPORT TERMINOLOGY

A-weighting Filtering sound levels to match human hearing sensitivity

Amplitude Modulation (AM) Low frequency periodic fluctuations in the level of audible noise from a wind turbine (or wind turbines), the frequency of the fluctuations being related to the blade passing frequency of the turbine rotor(s)

BG noise Background noise level

Blade passing frequency \((\text{Rotor revolutions/minute}) \times (\text{No. of blades}) / 60\), in Hertz

Broadband sound The broadband sound pressure level measured by a sound level meter over a wide frequency band, usually 20 – 20,000 Hertz

BST British Summer Time

EIS The Environmental Impact Statement submitted at planning stage.

Fast Fourier Transform (FFT) Fourier analysis converts a signal from its original to a representation in the frequency domain. An FFT rapidly computes such transformations and is used to identify narrow band tones in a signal.

GMT Greenwich Mean Time

Hub height wind speed Hub height wind speed is measured using a wind mast at turbine hub height or at the turbine hubs. If measured at the turbine hubs the values are corrected for turbulence

Infrasonic Noise Noise in the frequency range below 20 Hertz

IoA Institute of Acoustics

L\text{A90} The A-weighted noise level exceeded for 90% of the time during a measurement period. It \(L_{A90}\) is often used for the measurement of background or ambient noise. \(L_{A90}\) excludes many transient events such as individual vehicles passing and animal sounds. It is expressed in decibels (dB). Measurement interval for metrics in this report refers to 10 minute measurement periods unless otherwise advised

L\text{Aeq} The A-weighted equivalent continuous sound pressure level represents a theoretical continuous sound, over a stated time period, \(T\), which contains the same amount of energy as a number of sound events occurring within that time, or a source that fluctuates in level. It is expressed in decibels (dB). Measurement interval for metrics in this report refers to 10 minute measurement periods unless otherwise advised

L\text{night, outside} Refers to the World Health Organisation night time noise metric, i.e. the night time \(L_{Aeq}\) level averaged over the full year

Low Frequency Noise (LFN) Noise in the frequency range 10 Hz to 160 Hertz

Narrow Band Narrowband analysis is carried out with fine, high-resolution frequency analysis over a narrow bandwidth

Night Time The term night time refers to the period 22:00hrs to 04:00hrs unless otherwise advised. This period was chosen as a period when wind...
Noise Floor

The noise floor is the measure of the signal created from the sum of all the noise sources and unwanted signals within a noise meter, where noise is defined as any signal other than the one being monitored.

NSL

Noise Sensitive Locations

Strict Compliance

All measured levels are below the threshold.

Standardised Wind Speed

Turbine sound power levels determined in accordance with IEC 61400-11 are usually reported with reference to ‘standardised’ wind speeds at 10m height which are calculated from the hub height wind speeds using a standard equation (rather than actually measured at 10m height). This is the key reference wind speed for wind turbine noise.

Substantial Compliance

Some measured levels are above the threshold but the levels are generally compliant.

Time of day

Time is reported in Greenwich Mean Time (GMT).

Third Octave

Standardised constant percentage frequency bands used to evaluate acoustic signatures in more detail. Sound spectrums can be represented in octave or one-third octave frequency bands as well as in narrow frequency bands.

Tone

A sound resulting from periodic or regular vibrations, composed of a simple sinusoidal waveform (pure tone) or a narrow band of frequencies.

WAV Files

Waveform Audio File Format (WAVE, or more commonly known as WAV due to its filename extension) is a Microsoft and IBM audio file format standard for storing an audio bitstream on PCs.

WCDCSWF

Wexford County Development Control Standards for Wind Farms

WEDG (2006)

Wind Energy Development Guidelines 2006

Wind Shear

Wind shear is the variation in horizontal wind speed with height above ground level. Under most conditions, wind speeds increase with height above ground and various equations can be used to describe this. It can be associated with weather features such as weather fronts, radiation inversions occur due to clear skies and calm winds. It can have a significant effect on sound propagation.

Wind speed

Refers to ‘standardised’ wind speed at 10m using a roughness length of 0.05m.

Wind Turbine Noise

Noise emanating from wind turbines in the frequency range 10Hz to 800Hz.
1 INTRODUCTION

RPS was commissioned by Wexford County Council to carry out noise monitoring surveys to investigate the impact of noise emanating from four wind farms near Buncloody, County Wexford. The four wind farms are:

- Gibbet Hill
- Knocknalour
- Ballycadden
- Ballynancoran

This report relates to the Ballycadden wind farm. Detailed monitoring results are provided and are assessed in the report.

1.1 PROJECT SCOPE

Noise monitoring was carried out at 14 locations in the vicinity of the four wind farms over a period of 24 weeks. Monitoring consisted of both long-term unattended and short-term attended measurements. A number of noise parameters were measured during the survey and subsequent data analysis was carried out to assess noise levels attributable to the wind farms.

The data collected was analysed and reports prepared for each wind farm addressing compliance regarding noise emissions under the following headings:

1. Compliance with Planning Conditions on the wind farms being tested and/or predicted sound levels at noise sensitive locations, as per the planning submitted Environmental Impact Statement (EIS);

2. Compliance with the Department of Environment, Community and Local Government (DECLG), Wind Energy Development Guidelines 2006, in so far as they relate to noise standards;

3. Comment on the sound levels with regard to noise standards in each of the following:
 a) UK and other countries with well-developed wind energy infrastructure and regulations.
 b) WHO noise guidelines for night-time noise.
 c) Presence of tones, low frequencies, amplitude modulation.
 d) On the likelihood of noise nuisance as per Section 108 of the EPA Act No. 7 of 1992.

In this report data is presented based on the measurements taken and these are compared to the criteria outlined above.
2 NOISE CRITERIA

2.1 THRESHOLDS FOR COMPLIANCE AND NUISANCE

2.1.1 Compliance with Planning Permission

Planning permission compliance is a matter which is determined by a planning authority and RPS has been engaged to provide an opinion in this regard.

The terms ‘strict’ compliance and ‘substantial’ compliance are used in different contexts in making such a determination.

‘Strict’ compliance is normally applied where matters are fully in the control of the developer, for example, the maximum height of the wind turbines.

For weather dependent planning conditions, which is the case when considering wind turbine noise, ‘substantial’ compliance may be more appropriate.

There is currently no statutory guidance on the threshold for compliance with planning conditions for wind farm development. In particular there is no guidance on whether or not a single exceedance for weather dependent noise is a non-compliance. Where other environmental guidelines and regulations are in force, such as the Guidelines for Planning Authorities for Quarries and Ancillary Activities, the Surface Water Regulations and the Air Quality Standards Regulations, the principle of ‘substantial’ compliance has been applied. Substantial compliance is based on percentiles and average levels rather than individual (single exceedance) results. No equivalent guidance on wind farm noise has been provided to planning authorities to date.

RPS has taken the view that substantial compliance is the appropriate basis for determining compliance in the case of wind farm noise.

2.1.2 Nuisance Threshold

There is no internationally accepted threshold to define nuisance from wind farm noise.

Noise nuisance is a function of the level/intensity of the noise and characteristics which give reasonable cause for annoyance.

Wind turbine noise can include tonal, low frequency and amplitude modulation (AM) components. Recent research indicates that many of the issues relating to tonal and low frequency noise complaints may be attributable to the AM noise component. Variability in weather conditions cause difficulty in assessing potential noise nuisance because noise from wind farms with these characteristics can be infrequent.

RPS has used reasonable skill, care and diligence in determining the extent of tonal, low frequency noise and AM noise. The results from the measurements taken have been compared to best international practice.

2.2 BALLYCADDEN WIND FARM PLANNING PERMISSION

Planning permission (reference 20091730) for Ballycadden wind farm was granted on 15th March 2010.

Condition 11 states:

‘Within 12 months of the first operation of the wind turbines the operator shall provide a detailed independent report on the first years operations which shall include:-

a) A summary of bird collisions with the turbines;

b) A report on the noise levels experienced on dwellings adjacent to the site;

c) A report on the shadow flicker experienced on the dwellings adjacent to the site.

If abnormal results are identified above those predicted in the Environmental Impact Statement for the development, the operator shall submit proposals to reduce the impact such as limiting the use of turbines at sensitive periods. The report and any mitigation measures, including further monitoring if necessary shall be agreed in writing by the Planning Authority and the development shall operate in accordance with the agreed measures.

Reason:

To ensure that the development complies with the standards as set out in the Environmental Impact Statement and in the interests of the proper planning and sustainable development of the area.’

2.3 EIS NOISE IMPACT ASSESSMENT

A noise impact assessment was carried out as part of the EIS for the planning application for the wind farm. As part of the noise assessment a noise model was generated for the wind farm. Section 10.1.6 of the report states that:

‘The results have been assessed against the noise limits as set down in the Department of the Environment Heritage and Local Government, Wind Energy Development Guidelines, 2006’

The noise model was prepared using Enercon E-82 2.3MW turbines as candidate turbines for ten turbine locations. It should be noted that planning permission was granted for only nine out of these ten turbines. The turbines installed on-site are Enercon E-82 turbines ranging from 2.3-3 MW.

Section 10.3.7 of the noise impact assessment sets out that the noise predictions were calculated for wind speeds of 4-12m/s and the maximum predictions and are presented in the results.

The locations modelled as part of the noise impact assessment and the corresponding (nearest but not identical) RPS monitoring areas are shown in Table 2-1.
Table 2-1: Location codes from the Noise Impact Assessment and corresponding site number in the current report

<table>
<thead>
<tr>
<th>EIS Location</th>
<th>Corresponding RPS Monitoring Area (Figure 3.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H39</td>
<td>Site 08</td>
</tr>
<tr>
<td>H49</td>
<td>Site 09</td>
</tr>
<tr>
<td>H14</td>
<td>Site 10</td>
</tr>
<tr>
<td>H25</td>
<td>Site 11</td>
</tr>
<tr>
<td>H33</td>
<td>Site 12</td>
</tr>
</tbody>
</table>

The concluding section of the EIS (at Section 10.6.1) states:

‘The noise model clearly demonstrates that the proposed wind farm layout will comply with the noise limits as outlined in the Wind Energy Development Guidelines’.

The EIS noise assessment did not have regard to the Wexford Wind Energy Guidelines although it is a development requirement in Wexford.

It is unclear whether the ultimate commitment relating to noise emissions in the EIS is the predicted levels set out in the results of the report or compliance with the Wind Energy Development Guidelines. A comparison with both parameters is provided in Section 6 of this report.

2.4 WEXFORD COUNTY DEVELOPMENT CONTROL STANDARDS FOR WIND FARMS (2007)

Section 6.9 of the Wexford County Development Control Standards for Wind Farms states:

6.9 Noise

Permitted maximum noise levels at noise sensitive residences shall be:

45 dB $L_{eq}(A)$ from the nearest machine between the hours of 0800 and 2000, Monday to Sunday and 43 dB $L_{eq}(A)$ at all other times.

To allow for reliable measurements L_{eq} levels can be converted to L_{A90} levels (for wind farm noise) with the relationship $L_{A90} = L_{eq} - 3$.

It is important to note that the Development Control Standards are based on a L_{Aeq} metric with a conversion factor from a L_{A90} measurement. The conversion factor of 3 dB is more conservative than a 2 dB conversion referenced in ETSU_R-97 and the Institute of Acoustics Good Practice Guide at Section 4.2.5 of that document. This means that the permitted noise level on an L_{A90} basis using the Wexford County Development Control Standards for Wind Farms is 42 dB $L_{90}(A)$ from the nearest machine between the hours of 0:800 hrs and 20:00 hrs, Monday to Sunday and 40 dB $L_{90}(A)$ at all other times.
2.5 WIND ENERGY DEVELOPMENT GUIDELINES, 2006

The DECLG Wind Energy Development Guidelines (WEDG, 2006) provide guidance on the noise levels that should be met at the nearest Noise Sensitive Locations (NSL). The guidance cites the two main sources of noise from wind turbines as that from the mechanical elements, created during the operation of the turbine, and the aerodynamic noise generated as a result of the rotation of the turbine blade.

The Guidelines state:

‘Noise impact should be assessed by reference to the nature and character of noise sensitive locations. In the case of wind energy development, a noise sensitive location includes any occupied dwelling house, hostel, health building or place of worship and may include areas of particular scenic quality or special recreational amenity importance. Noise limits should apply only to those areas frequently used for relaxation or activities for which a quiet environment is highly desirable. Noise limits should be applied to external locations, and should reflect the variation in both turbine source noise and background noise with wind speed. The descriptor9, which allows reliable measurements to be made without corruption from relatively loud transitory noise events from other sources, should be used for assessing both the wind energy development noise and background noise. Any existing turbines should not be considered as part of the prevailing background noise.

A footnote refers to: 9 L_{A90}, 10mm - (should read L_{A90}, 10 min).

In general, a lower fixed limit of 45 dB(A)10 or a maximum increase of 5dB(A) above background noise at nearby noise sensitive locations is considered appropriate to provide protection to wind energy development neighbours. However, in very quiet areas, the use of a margin of 5dB(A) above background noise at nearby noise sensitive properties is not necessary to offer a reasonable degree of protection and may unduly restrict wind energy developments which should be recognised as having wider national and global benefits. Instead, in low noise environments where background noise is less than 30 dB(A), it is recommended that the daytime level of the L_{A90}, 10min of the wind energy development noise be limited to an absolute level within the range of 35-40 dB(A).

A footnote refers to:

10 An ‘A-weighted decibel’ – a measure of the overall noise level across the audible frequency range (20Hz – 20kHz) with A-frequency weighting to compensate for the varying sensitivity of the human ear to sound at different frequencies. The decibel scale is logarithmic. A 10dB(A) increase in sound level represents a doubling of loudness. A change of 3dB(A) is the minimum perceptible under normal circumstances.’

Separate noise limits should apply for day-time and for night-time. During the night the protection of external amenity becomes less important and the emphasis should be on preventing sleep disturbance. A fixed limit of 43dB(A) will protect sleep inside properties during the night.
The 2006 Guidelines were generally interpreted to impose a limit of 43 dB(A) at night at NSL, based on a L_{A90} metric. While the WEDG (2006) state that mechanical noise from a wind turbine is tonal in nature and turbines can display a ‘character’ (swish), no provision is made in the Guidelines for addressing Tonal, Low Frequency or Amplitude Modulation elements in the noise level.

2.6 INTERNATIONAL GUIDANCE AND REGULATIONS

Remarkably few countries have regulations that are specific to wind turbine noise. Many countries, such as Germany, have general noise guidelines that apply to all noise sources, including wind turbines. The UK, Australia, Canada and Denmark all have a large operational wind turbine capacity. These countries have conducted independent research into wind turbine noise and published wind turbine noise guidelines.

2.6.1 UK Guidelines

2.6.1.1 ETSU-R-97 Guidance

The UK Department of Trade and Industry set up a Working Group on Noise from Wind Turbines in 1996. This group published guidance the following year which has become known as ETSU-R-97.

ETSU-R-97 sets out a fixed day-time limit at NSLs during quiet periods of 35-40 dB L_{A90} and a night-time limit of 43 dB L_{A90}. However the guidance states that

‘Where the local authority and the developer are in agreement that the background noise levels do not vary significantly between the amenity periods and the night-time, then a single lower fixed limit of 35 – 40 dB(A) can be imposed based upon background noise levels taken during the amenity periods and the night analysed together’.

Noise level limits can also be set for different wind speeds up to 12 m/s and the methodology for doing this is given in ETSU-R-97.

The limits proposed in ETSU-R-97 are set out as follows:

‘Noise from the wind farm should be limited to 5dB(A) above background for both day and night-time (with the exception of the lower limits and simplified method described below), remembering that the background level of each period may be different.

In low noise environments the day-time level of the $L_{A90, 10min}$ of the wind farm noise should be limited to an absolute level within the range of 35-40 dB(A). The actual value chosen within this range should depend upon a number of factors:

- the number of dwellings in the neighbourhood of the wind farm
- the effect of noise limits on the number of kWh generated
- the duration and level of exposure.'
Guidance is also given on the measurement parameters that should be used for wind farm noise. The guidance states:

‘The Noise Working Group is agreed that the $L_{A90,10\text{min}}$ descriptor should be used for both the background noise and the wind farm noise, and that when setting limits it should be borne in mind that the $L_{A90,10\text{min}}$ of the wind farm is likely to be about 1.5-2.5dB(A) less than the L_{Aeq} measured over the same period. The use of the $L_{A90,10\text{min}}$ descriptor for wind farm noise allows reliable measurements to be made without corruption from relatively loud, transitory noise events from other sources.’

The Noise Working Group recommends that the fixed limit for night-time is 43dB(A). This limit is derived from the 35dB(A) sleep disturbance criteria referred to in Planning Policy Guidance Note 24 (PPG 24). An allowance of 10dB(A) has been made for attenuation through an open window (free-field to internal) and 2dB subtracted to account for the use of $L_{A90,10\text{min}}$ rather than $L_{Aeq,10\text{min}}$.

The UK guidance is based on a L_{A90} metric. Note that the night time limit can be higher than the daytime limit in areas of low background noise under ETSU-R-96.

2.6.1.2 Institute of Acoustics Good Practice Guide

The Institute of Acoustics (IoA) published a *Good Practice Guide to the Application of ETSU-R-97 for the assessment and rating of Wind Turbine Noise* (GPG) in May 2013. A number of supplementary guidance documents including data collection and post completion measurements have been subsequently published by the IoA.

The IoA Guidance provides the most comprehensive guidance to measuring and analysing wind farm noise and therefore this study used the IoA GPG as the basis for measuring the (post completion) wind farm noise. The IoA GPG does not set limits for noise so the current guidance on limits is determined by the ETSU-R-97 guidance.

2.6.2 Recent Developments in UK Guidance

The UK Department for Communities and Local Government provided planning practice guidance for renewable and low carbon energy in July of 2013. UK guidance states:

‘The report, ‘The assessment and rating of noise from wind farms’ (ETSU-R-97) should be used by local planning authorities when assessing and rating noise from wind energy developments. Good Practice Guidance on noise assessments of wind farms has been prepared by the Institute Of Acoustics. The Department of Energy and Climate Change accept that it represents current industry good practice and endorses it as a supplement to ETSU-R-97’.

The Noise Policy Statement for England sets out noise policy for England in terms of No, Low and Significant Observed Adverse Effect Levels (NOAEL, LOAEL and SOAEL respectively). The current guidance does not provide numerical values. Research is ongoing to determine appropriate OAEL levels for different noise sources (traffic, wind turbines, industrial noise etc.).
The UK Department for Business, Energy & Industrial Strategy published a review of the evidence on the response to amplitude modulation (AM) from wind turbines with recommendations on control through the use of a Planning Condition in October 2016. This review has proposed a penalty scheme for AM based on the Institute of Acoustics metric.

The UK guidelines on AM were introduced while monitoring was underway for this report. While the new guidelines are designed for new wind farm development, the criteria proposed have been used in this assessment.

2.6.3 South Australia

South Australia is the largest producer of wind energy in Australia. The South Australian Environmental Protection Authority has published Wind farms environmental noise guidelines (ISBN 978-1-876562-43-9). In these guidelines the noise criteria for new wind farm development is set out as follows:

> ‘The predicted equivalent noise level ($L_{A_{eq,10}}$), adjusted for tonality in accordance with these guidelines, should not exceed:

- 35dB(A) at relevant receivers in localities which are primarily intended for rural living, or
- 40dB(A) at relevant receivers in localities in other zones, or
- the background noise ($L_{A_{90,10}}$) by more than 5dB(A), whichever is the greater, at all relevant receivers for wind speed from cut-in to rated power of the WTG and each integer wind speed in between.’

A ‘rural living’ zone is defined as a rural–residential ‘lifestyle’ area intended to have a relatively quiet amenity. The guidelines state:

> ‘The area should not be used for primary production other than to produce food, crops or keep animals for the occupiers’ own use, consumption and/or enjoyment. The noise amenity should be quieter than in an urban–residential area.’

This indicates that land used for agricultural purposes (such as the area surrounding the wind farms) falls into the higher 40 dB(A) category. The determination of whether the area should be designated in the lower limit category is made by the SA EPA in consultation with the council for the area concerned.

The South Australian guidance is based on a $L_{A_{eq}}$ metric.

2.6.4 Denmark

The Danish Ministry of Environment and Food issued a Statutory Order on Noise from Wind Turbines in December 2011. This order sets (inter alia) the noise impact dwellings at two wind speeds only, 8m/s and 6 m/s. The limits specified at dwellings are as follows:

> The total noise impact from wind turbines may not exceed the following limit values:
1. At the most noise-exposed point in outdoor living area no more than 15 metres from dwellings in open countryside:
 a) 44 dB(A) at a wind speed of 8 m/s.
 b) 42 dB(A) at a wind speed of 6 m/s.

2. At the most noise-exposed point in areas with noise-sensitive land use:
 a) 39 dB(A) at a wind speed of 8 m/s.
 b) 37 dB(A) at a wind speed of 6 m/s.

Noise-sensitive land use is defined as:

Areas that are actually used for or designated in district plans or town planning regulations for residential, institutional, holiday home, camping or allotment purposes or areas designated in district plans or town planning regulations for noise-sensitive recreational activities.

In RPS’ opinion noise sensitive land use is restricted to designated areas, otherwise the first category of *dwellings in open countryside* does not make sense.

The Danish Statutory Order is based on a L_{Aeq} metric.

The Statutory Order goes on to provide a limit on Low Frequency Noise (LFN). LFN is defined as being in the frequency range from 10 to 160 Hz and is characterised using the A-weighted level of noise in one-third octave bands from 10 up to and including 160 Hz, calculated indoors using the method set out in Annex 1.

Annex 1 of the Statutory Order sets out a noise prediction method for use at planning stage. The Danish Statutory Order first calculates the external LFN and then applies a correction for indoor values. The total LFN from wind turbines may not exceed 20 dB at a wind speed of 8 and 6 m/s indoors in dwellings in open countryside or indoors in areas with noise-sensitive land use respectively. The method for calculating the total is set out in the Annex.

For this study all measurements were taken outdoors. The Danish method is easily adapted for outdoor measurements as all that is necessary is to review the outdoor to indoor conversion factor in the calculation.

2.6.5 Canada

Wind Turbine noise in Canada is governed by the Provinces rather than at State level. The Provinces operate limits based on a L_{Aeq} metric with significant variation between them. The limits are further complicated by an additional 5 dB allowance for properties close to roads or subject to frequent aircraft overflights.

At a wind speed of 6 m/s the Canadian levels are lower [40 dB(A)] than those permitted in Denmark [42 dB(A)]. The Canadian levels are also higher [45 dB(A)] than those permitted at a wind speed of 8 m/s [44 dB(A)] in Denmark. The Canadian Provinces of Manitoba, New Brunswick and Ontario permit levels of 51 dB(A) at wind speeds of 10 m/s.
2.7 WORLD HEALTH ORGANISATION NOISE GUIDELINES FOR NIGHT TIME NOISE

The World Health Organisation (WHO) examined ‘community’ noise comprising road, rail, air traffic, construction and public work, and issued guidelines in 1999 recommending a daytime limit based on annoyance of 55 dB(A) and a night time limit 10 dB(A) lower than this, i.e. 45 dB(A), outside at the noise sensitive location.

A more recent (2009) WHO document dealing with transportation noise and addressing noise sources regulated under the European Environmental Noise Directive, referred to as Noise Guidelines for Europe, refers to more recent research and sets a lower threshold of 40 dB(A) (L_{\text{night, outside}}). The report states:

‘......no effects on sleep are observed except for a slight increase in the frequency of body movements during sleep due to night noise. There is no sufficient evidence that the biological effects observed at the level below 40 dB L_{\text{night, outside}} are harmful to health. However, adverse health effects are observed at the level above 40 dB L_{\text{night, outside}} such as self-reported sleep disturbance, environmental insomnia, and increased use of somnifacient drugs and sedatives. Therefore, 40 dB L_{\text{night, outside}} is equivalent to the lowest observed adverse effect level (LOAEL) for night noise.’

The WHO and END metric is based on an annualised measurement (L_{\text{Aeq}}) whereas all the previously outlined measurements are based on 10 minute periods.

2.8 INTERNATIONAL PRACTICE - NOISE MEASUREMENT LOCATIONS

Environmental noise standards provide guidance on procedures and instrumentation for measuring environmental noise. Environmental noise standards such as ISO 1996-1:2016, ANSI S12.9-4(2005) as well as AS 4959-2010, NZS 6808:2010 and ETSU-R-97, which deal with wind turbine noise specifically, all rely on outdoor noise measurement locations.

2.9 INTERPRETATION OF COMPLIANCE THRESHOLDS

Based on Sections 2.1 to 2.8 above the compliance guidelines for the wind farms can be summarised as set out in Table 2-2.
Table 2-2: Noise Thresholds

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning Conditions (a)</td>
<td>Site specific limits</td>
</tr>
<tr>
<td>Based on the site-specific noise predictions in the noise impact assessment</td>
<td>Site specific limits</td>
</tr>
<tr>
<td>Planning Conditions (b)</td>
<td>Site specific limits</td>
</tr>
<tr>
<td>Based on the conclusion of the noise impact assessment</td>
<td>Site specific limits</td>
</tr>
<tr>
<td>Wexford County Development Control Standards for Wind Farms</td>
<td>45 dB(A)</td>
</tr>
<tr>
<td>LAeq Day-time</td>
<td>43 dB(A)</td>
</tr>
<tr>
<td>LAeq Night-time</td>
<td>45 dB(A)</td>
</tr>
<tr>
<td>DeclG Wind Energy Development Guidelines</td>
<td>45 dB(A)</td>
</tr>
<tr>
<td>LA90 Day-time</td>
<td>43 dB(A)</td>
</tr>
<tr>
<td>LA90 Night-time</td>
<td>43 dB(A)</td>
</tr>
<tr>
<td>ETSU-R-97 Guidance</td>
<td>Greater of 35 dB(A) or Background + 5dB</td>
</tr>
<tr>
<td>LA90 Day-time</td>
<td>43 dB(A) at night</td>
</tr>
<tr>
<td>LA90 Night-time</td>
<td>43 dB(A) at night</td>
</tr>
<tr>
<td>South Australia</td>
<td>40 dB(A) at relevant receivers in localities in other zones, or the background noise (LA90,10) by more than 5dB(A),</td>
</tr>
<tr>
<td>LAeq</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>44 dB(A) at a wind speed of 8 m/s.</td>
</tr>
<tr>
<td>LAeq</td>
<td>42 dB(A) at a wind speed of 6 m/s.</td>
</tr>
<tr>
<td>Canada</td>
<td>45 dB(A) at a wind speed of 8 m/s.</td>
</tr>
<tr>
<td>LAeq</td>
<td>40 dB(A) at a wind speed of 6 m/s.</td>
</tr>
<tr>
<td>WHO Guidelines for Night-time</td>
<td>40 dB(A)</td>
</tr>
<tr>
<td>L_{night, outside}(LAeq)</td>
<td></td>
</tr>
</tbody>
</table>

2.10 PRESENCE OF TONES, LOW FREQUENCIES, AMPLITUDE MODULATION

2.10.1 Tones

Standard guidance can be applied when assessing the presence of a tone from wind turbines. The following methods are used to determine if a tone is present. These are, in order:

1. The subjective method
2. The objective method for tonality
3. The reference method
The subjective method uses a subjective assessment of the noise characteristics to assess the need to apply a correction factor. This requires the presence of an experienced acoustician on site to evaluate the noise emission and report on the situation.

The objective method to assess the presence of a tone uses one-third octave band analysis. This examines the level differences between adjacent one-third octave bands at different frequencies. A significant change in noise levels between adjacent bands indicates the presence of a tone. The methodology is set out in Annex C of BS4142:2014 and Annex C of ISO 1996-2:2007.

BS4142:1997 ‘Method for rating industrial noise affecting mixed residential and industrial areas’ was revised in 2014; the most significant changes being the introduction of a different penalty system and a broader application of the standard. The revised standard is BS4142:2014 ‘Method for rating and assessing industrial and commercial sound’. As the revision took place after the wind farm received planning permission and were constructed the appropriate penalty is possibly the standard that was in effect at that time.

BS4142 provides guidance on assessing the presence of a tone from industrial noise sources. While not explicitly required the methods are usually followed in order, i.e. if a tone is detected subjectively, the objective method is used to determine an appropriate penalty. If this does not result in a penalty the reference method may be referred to.

The ETSU-R-97 tonal assessment methodology is constructed around the use of 2 minute audio samples in every 10 minutes of measurement.

The reference method assesses the prominence of tones using critical band Fast Fourier Transform (FFT) analysis and penalties are calculated in accordance with BS4142. This method is set out in Annex C of ISO 1996-2:2007 and also referred to as the Joint Nordic Method. Where it is deemed necessary from results using the subjective or objective methods, the reference method has been applied.

Where a tone is considered to be present, a rating or correction factor is applied to the noise level measured. This rating will only be applied to the ETSU-R-97, South Australian and Danish criteria. Neither the planning permission conditions nor the Wexford County Development Control Standards for Wind Farms make any reference to a rated noise level.

2.10.2 Low Frequency Noise

In Denmark a Statutory Order on Noise from Wind Turbines (SO 1284, 2011) deals specifically with Low Frequency noise from wind turbines at planning stage. The methodology is based on predicting Low Frequency noise levels external to a property and then applying a standard sound insulation difference to determine levels indoors. It is important to note that the method is based on a predicted rather than measured level and the indoor to outdoor correction is based on a ‘standard’ sound insulation level.

For this study all measurements were taken externally. In terms of enforcement the wind farm operators cannot easily be held responsible for building specific characteristics that may in some cases increase the relative loudness of low frequency noise due to selective filtering and modal resonances of the receiving structure.
In the UK a study by the University of Salford proposed criteria for internal Low Frequency noise levels at one-third octave bands from 10 Hz to 160 Hz. The study was commissioned to provide guidance for Environmental Health Officers investigating low frequency noise complaints. In many cases the noise in these complaints emanates from adjoining domestic properties. This study also outlines the difficulties associated with taking internal noise measurements.

To determine appropriate external Low Frequency noise levels a correction for sound insulation must be made. The sound insulation level difference provided in the Danish Statutory Order is greater than 20 dB at frequencies as low as 100 Hz (Table 5-2). In the absence of hard data for low frequency sound insulation levels in Ireland a more conservative approach may be warranted. RPS has adopted a spectrum of corrections taken from Beranek (1998). The RPS corrections are applied at a more conservative sliding scale, which has a 15 dB correction at 160 Hz and zero below 25 Hz. The RPS corrections were applied to the DEFRA guidelines for internal noise.

A data matrix of unweighted sound level at each one-third octave band against date and time was created where each record represents a 10 minute interval. Intervals that are considered daytime are removed leaving night only (22:00 – 04:00). The value of each interval at each one-third octave band is checked against the University of Salford internal guidelines adjusted for external measurements by RPS as set out in Table 5-2 and exceedances recorded.

It is important to note that low frequency noise in the context of this report refers to emission frequencies from the turbine. Low frequency ‘whump’ type noise is related to amplitude modulation and is measured and accounted for separately in this report. Amplitude modulation is a low frequency noise but the mechanism for measuring and reporting it has now been clarified by the Institute of Acoustics.

2.10.3 Amplitude Modulation

A guidance document on rating Amplitude Modulation (AM) noise has been published by the Institute of Acoustics (IOA, 2016). This guidance is the culmination of several years work following on from the publication of the Good Practice Guide on Wind Turbine Noise in 2013. The process included wide consultation among acousticians working in industry, regulatory bodies and academic research on the topic.

During the consultation process the issue of taking noise measurements indoors or outdoors was discussed at length. The decision was made to take amplitude modulation measurements outdoors, primarily because of the practical difficulties associated with making repeatable noise measurements indoors. As part of the consultation on this topic the working group stated:

‘The working group’s objective is to define a metric that can be used reliably within the planning system, and external measurements are the only practicable option. For specific complaint or nuisance measurements, Investigators are of course free to make internal measurements and assessments in connection with the specific issues. Indoor measurements are problematic for a variety of reasons including, access difficulties, corruption by other sources, and room modes which could result in different responses in different positions in the room. These factors can cause a large variation in noise levels which can affect reproducibility.'
It is considered unnecessary to account for all of these factors when wind turbine AM can be measured reliably outdoors. Furthermore the noise data input to the recommended metric is band-limited to reduce the influence of high- and low-frequency background noise. To some (although indeterminate) extent, this reflects the sound attenuation characteristics of building facades and windows in preferentially reducing higher frequencies rather than low, which may mean that the outdoor metric better reflects the perception of AM indoors, compared with a metric based on broadband A-weighted noise data where other sources may mask the AM. This is a possible incidental benefit of band-limiting which is incorporated into the recommended method for other reasons.1

While not ruling out internal measurements the guidance does point out the factors that would cloud the issue in the event of a planning authority taking enforcement action for excessive amplitude modulation. The IoA Guidance on AM is however limited to the standardisation of a methodology for measuring and rating AM. The working group preparing the guidance did not provide a limit for AM, only a method for rating it.

In 2013, Renewable UK published a report on Wind Turbine Amplitude Modulation: Research to Improve Understanding as to its Cause and Effect along with a Template Planning Condition on Amplitude Modulation: Noise Guidance Notes. This provided an initial industry led response to the issue of AM and defined the concept of ‘enhanced’ or ‘Other Amplitude Modulation’ levels. A threshold of 3 dB excess AM was proposed as an appropriate limit.

The UK Department of Environment and Climate Change (DECC) commissioned research on appropriate guidelines on AM. The result of this research the DECC published two reports, the latest of which, *Wind Turbine AM Review – Phase 2 Report*, published in August 2016 recommends using the IoA metric for quantifying AM and proposes testing and review of an additional penalty of 3 to 5 dB on a sliding scale for unacceptable or excessive levels of AM as shown on Figure 2.1. The report concludes:

‘Based on the evidence found, a recommendation has been made on the elements required to construct a planning condition to control AM. It is noted that the AM control has only been designed for use with new planning applications, and applicability for use in Statutory Nuisance investigations on existing wind turbine sites, where the regime is different and outside the project scope,1 has not been considered as part of this review.

Any condition developed using the elements proposed in this study should be subject to a period of testing and review. The period should cover a number of sites where the condition has been implemented, and would be typically in the order of 2-5 years from planning approval being granted.’

In the context of this report, the UK methodology for assessing AM was only finalised while monitoring was in progress. Further research will be required before a definitive penalty scheme for AM will be imposed in the UK. Nonetheless analysis for the presence of AM was carried out using this methodology on WAV files in which AM was likely to be present.

1 RPS emphasis
2.11 THE LIKELIHOOD OF NOISE NUISANCE

Section 108 of the EPA Act No.7 of 1992 states that a complaint may be made to the District Court for ‘any noise which is so loud, so continuous, so repeated, of such duration or pitch or occurring at such times as to give reasonable cause for annoyance to a person in any premises in the neighbourhood or to a person lawfully using any public place’.

The noise data was analysed to assess whether the noise from the wind farms could potentially constitute a nuisance.
3 MONITORING METHODOLOGY AND DATA COLLECTION

3.1 SITE LOCATION

Ballycadden wind farm is located in the townlands of Ballycadden Lower, Ballycadden Upper, Curralane, Oldtown, Lackendarragh and Bolinrush, near Bunclody County Wexford. The development comprises of 9 wind turbines and was commissioned in 2012.

3.2 PREVIOUS NOISE MONITORING DATA

Background noise monitoring for the Ballycadden wind farm was carried out in 2009 and a report was subsequently prepared detailing the results of the monitoring. The level for background noise was taken as 25 dB from Table 4.2 of the background noise monitoring report.

Planning permission for Ballycadden wind farm was granted on 15th March 2010 (Planning Reference No. 20091730).

3.3 MONITORING METHODOLOGY

Noise monitoring was carried out in accordance with the Institute of Acoustics (IoA) document “A Good Practice Guide to the Application of ETSU-R-97 for the Assessment and Rating of Wind Turbine Noise” and Supplementary Guidance Notes. The IoA document provides guidance on the assessment methodology for all wind farm developments in accordance with the ETSU-R-97 method. The assessment methodology provides procedures for predicting the noise levels from both existing and proposed wind farm developments at NSLs. The guidance also establishes the link between wind speed and noise levels from wind turbines and gives a procedure for carrying out noise surveys.

Wind turbine noise differs from other sources of noise as most noise measurement standards and equipment are designed around low wind conditions. In addition wind turbine noise is acoustically similar to background wind noise and can be difficult to isolate. Another factor in this regard is that wind turbine noise guidelines and wind turbine noise levels generally are in the same intensity range as the background noise.

In order to determine compliance with wind farm noise limits particular measures are internationally recognised as providing the most relevant data, i.e. isolating wind turbine noise from other sources. During this study the following measures were adopted:

1. Isolating night time (10pm to 4am) data so that wind turbine noise was prominent.
2. The use of a double windshield on the microphone.

3.4 INSTRUMENTATION

Instrumentation used during the survey were Bruel & Kjaer model 2250 noise level meters with the following capabilities:
- Measurements set for Fast time weighting;
- 1/3 Octave measurements from 6 Hz to 20kHz;
- L(Z) Peak;
- L(Aeq, LAmx, L(Amin, L(Apeak, L(C)eq, L(C)min, L(C)max, L(Z)eq, L(Z)min, L(Z)max);
- LN Statistical Noise Levels of L1, L5, L10, L90, L95 and L99;
- Fast Fourier Transform (FFT) analysis from 0 Hz to 200 Hz; and
- Audio recording (24 bit rate) of a sample of measurements.

A weather protection system was used on all microphones in accordance with IoA Good Practice Guidance. This consisted of an enhanced double wind screen placed around the microphone of the meter. This served to both reduce the effect of wind induced noise on the measurement and to protect the microphone from rain droplets. All microphones were positioned at a height of 1.2-1.5m above ground, as specified in ETSU-R-97.

3.5 NOISE MONITORING LOCATIONS FOR THIS REPORT

The noise monitoring locations are shown in Figure 3.1 along with the turbine locations for the four wind farm sites. The monitoring locations were chosen on the basis of providing a representative sample of properties surrounding the wind farms and to provide comparable locations to those used in the original EIS studies. The locations were identified by RPS from a desk study of the area and a map indicating 500 metre diameter circles was provided to Wexford County Council. The County Council then approached landowners in each of the circled areas to request their cooperation with the study. Following discussions with the land owners thirteen sites were identified by Wexford County Council. One site was later relocated so fourteen sites were monitored in total. The majority of the land owners were willing to cooperate on the basis of confidentiality, i.e. they did not wish to be identified by either text or images published in the report. For this reason the monitoring locations are only identified as Site 01 to Site 14 with no personally identifiable information included in the report. Each monitoring location is shown as a 500m diameter area to protect the confidentiality of the host location.

3.5.1 Site 06 and Site 14

Shortly after the start of monitoring, the instrumentation at Site 06 was interfered with (attempted theft suspected). It was decided to relocate the monitoring equipment to a less visible site but due to logistics it was necessary to move outside the 500m radius of Site 06. Therefore Site 14 came into existence for the remainder of the monitoring. As the two sites are not inside the original 500m radius criteria, the results are reported separately.

3.5.2 Ballycadden Specific Locations

Wexford County Council requested that a separate report be prepared for each wind farm. The locations that are most impacted by the Ballycadden wind farm are Site 08, Site 09, Site 10, Site 11, and Site 12. Detailed analysis for each of these locations is included in this report.
Client: Wexford Co. Co.

Project: Wexford Wind Farms

Title: Noise Monitoring Areas

Figure: 3.1

Drawn by: CMcC

Project No.: MGE0552

Checked by: EMK

File Ref.: MGE0552QG001F01

Approved by: EMK

Scale: nts

Date: 20/04/2017

Notes: This drawing is the property of RPS Group Ltd. It is a confidential document and must not be copied, used, or its contents divulged without prior written consent. Ordnance Survey Ireland Licence No. EN 0005016 © Ordnance Survey Ireland/Government of Ireland.
3.6 WEATHER DATA

RPS installed two weather stations, at Sites 03 and 13, which recorded wind speed, wind direction (using an anemometer mounted on a meteorological mast at 10m height) and rainfall in ten-minute logging periods for the full monitoring period. The wind masts were located outside the turbulent wake of the wind farms but subject to local site conditions.

Wind speed data at the measurement sites was used to determine periods under which significant wind shear may be present, i.e. relatively high wind speeds at turbine hub height but low wind speeds at the measurement location. Rainfall of <0.1mm in a 10min period was not recorded. Measurements related to high wind shear conditions may provide the worst case noise levels, in particular AM is recognised as being prevalent under high wind shear conditions.

3.7 WIND FARM OPERATIONAL DATA

Consideration was given to requesting switch-offs at the wind farms. From early monitoring results it was clear that switch-offs would have limited value and would have to be arranged for specific conditions in order to be effective. This would require coordination with the national grid and have operational consequences for the wind farm operators. The wind farm operators did indicate a willingness to facilitate switch-offs but the likelihood of achieving the desired weather and operating conditions at short notice was not considered practicable.

Measuring the noise over an extended period provided a better mix of conditions and facilitated full cooperation from the operators.

3.8 CONFIRMATION OF SPECIFIC EVENTS

In addition to being provided with data from the wind farm operators, RPS was provided access to the wind farm control centres and data acquisition systems. This allowed RPS to examine specific turbine operating conditions and verify the data provided by the operators.

Events highlighted in the noise logs or identified from preliminary data analysis were examined in detail during this access. This facilitated a focus on specific operating or weather conditions that may give rise to noise issues.

3.9 NOISE LOGS

Noise logs were collected by a number of residents in the vicinity of the assessment area throughout the monitoring period (June – December). In the logs residents recorded characteristics of the noise they could hear, rated it on a scale from 1 to 10 (where 10 is worst) and noted the time and date. Within the monitoring period approximately 300 individual records were collected.

3.10 LONG-TERM NOISE MONITORING

Long-term monitoring comprised 14 unattended monitoring stations which allowed noise to be measured simultaneously at all sites in the area.
Measurements of turbine noise were carried out continuously in 10-minute intervals in accordance with ETSU-97-R and synchronised with wind speed, direction and other operational data from the site.

Noise was initially recorded continuously to provide data that could be analysed at any future stage in the project. All measurements were time stamped to allow for correlation with other noise, meteorological and other relevant data. Noise measurements were referenced to Greenwich Mean Time to allow synchronisation with wind turbine data.

Continuous monitoring was carried out for a period of five weeks. Due to logistical problems with some of the noise meters monitoring was carried out for an additional week to ensure five weeks of data were available for analysis. At the end of the five week period an additional three weeks monitoring was carried out during ‘Winter’ conditions following representations critical of the monitoring being carried out during the ‘Summer’ season only.

In order to provide continuity of data at representative sites, three sites were chosen for monitoring during the interim period i.e. the time between the five week and three week monitoring periods. Sites on the west, centre and east of the wind farms were chosen, Sites 03, 09 and 13. Due to the volume of data being generated noise monitoring/measurement was continued on a 24 hour basis but recording of sound was reduced to night time hours only.

Due to the rural nature of the monitoring locations, the dawn chorus was a particular problem particularly during the summer months. This was the dominant noise source from 4am (BST) during the summer period. From around 6am traffic began to dominate the sound field and later in the day agricultural and domestic activity became the dominant sources. From an examination of the initial data it was clear that to isolate wind turbine noise the only period of interest would be 10pm to 4am.

3.11 ATTENDED MONITORING

Attended monitoring was carried out to assess the presence of tones, low frequency noise and amplitude modulation. Site visits were carried out on 15th/16th June, 13th July, 15th/16th August and 12th/13th/14th October 2016. Subjective monitoring for tonal and AM components in the wind turbine noise was carried out on each occasion. A five point subjective scale was used to evaluate the intensity of tonal and AM components. The scale is presented in Table 3-1 and given the nature of wind turbine noise does not have a zero point on the scale.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Significant</td>
<td>Noted</td>
<td>Evident</td>
<td>Clearly Audible</td>
<td>Dominant</td>
</tr>
</tbody>
</table>

The site visits were carried out to coincide with weather conditions that were expected to lead to significant AM and/or tonal components. This was based on weather forecasts and information coming in from the log sheets described in Section 3.9. Tonal and AM components were noted as outlined in Table 6-2.
4 NOISE MODEL

4.1 MODEL PARAMETERS

A noise model was generated for the area which incorporated the turbines from each of the four wind farms as well as each monitoring location. This was carried out to assess the impact of each wind farm on the individual monitoring locations, in particular where more than one wind farm may be having an effect on noise levels at the monitoring location. The noise model was carried out in accordance with the Institute of Acoustics (IoA) Good Practice Guidance document “A Good Practice Guide to the Application of ETSU-R-97 for the Assessment and Rating of Wind Turbine Noise”. The model is referred to as the IoA model.

The model was calculated using ISO9613-2:1996 Acoustics – Attenuation of sound during propagation outdoors – Part 2: General Method of Calculation. This method of calculation is based on conditions favourable to propagation, i.e. moderate downwind conditions or under temperature inversions. In the case of four separate wind farms it is unlikely that the receiver will be downwind of all the turbines in the area so the calculation is relatively conservative.

The IoA GPG has recognised ISO 9613 as the most appropriate modelling method for wind farm noise provided certain parameters are included in the model calculations. The ground attenuation factor has a significant impact on the predicted noise levels at receiving locations due to differing absorption rates. A ground attenuation factor of 0.0 applies to hard ground (such as paving, water or concrete surfaces) and a ground attenuation factor of 1.0 applies to porous or soft ground (grassland, trees, vegetation). In accordance with the guidance a ground attenuation factor of 0.5 was applied to the model.

The guidance also recommends a receiver height of 4.0m and atmospheric conditions of 10°C and 70% humidity, all of which were adopted in the noise model. The noise model predicted noise levels from the wind turbines at a wind speed of 10m/s in order to represent a worst case scenario for the propagation of noise from the wind turbines to the receiver points.

4.2 MODEL DATA

Terrain data for the noise model was obtained from Wexford County Council in the form of OSI Mapping. The terrain for an area of approximately 94km² was mapped using a 5m x 5m grid (approximately 9,000,000 grid points). A site survey was carried out by Wexford County Council to obtain the locations of the turbines for each of the four wind farms. The location data was subsequently provided to RPS and was incorporated into the noise model.

Sound power level data for the turbines for Ballycadden wind farm was obtained from data provided to RPS by the turbine manufacturer.

Noise levels were calculated for each of the monitoring locations and the surrounding area. The model prepared for this report using the IoA methodology is referred to as the IoA model.
Title: Noise Prediction Plot at 10m/s Wind Speed

Project: Noise Monitoring Services (Wexford Wind Farms) - Lot 1

Client: Wexford County Council

Date: 20/06/2017

This drawing is the property of RPS Group Ltd. It is a confidential document and must not be copied, used, or its contents divulged without prior written consent. Ordnance Survey Ireland Licence No. EN 00005016 © Ordnance Survey Ireland/Government of Ireland.
4.3 MODEL RESULTS

The results for Sites 08, 09, 10, 11, and 12 are detailed in the sections below. The results show the contribution of each turbine at the Ballycadden wind farm (referred to as T1 – T10) towards the overall noise level at the site. The model results are shown on Figure 4.1. The predicted levels are compared to the levels predicted in the original EIS submitted with the planning application for Ballycadden.

4.3.1 Site 08

The overall noise level result and contribution of each turbine at the Ballycadden wind farm to this noise level is shown in Table 4-1.

Table 4-1: Noise Level Results – Site 08, Ballycadden Turbines

<table>
<thead>
<tr>
<th>Turbine</th>
<th>T1 (dB LAeq)</th>
<th>T2 (dB LAeq)</th>
<th>T4 (dB LAeq)</th>
<th>T5 (dB LAeq)</th>
<th>T6 (dB LAeq)</th>
<th>T7 (dB LAeq)</th>
<th>T8 (dB LAeq)</th>
<th>T9 (dB LAeq)</th>
<th>T10 (dB LAeq)</th>
<th>Total Ballycadden (dB LAeq)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>35.7</td>
<td>34.6</td>
<td>31.4</td>
<td>28.8</td>
<td>25.7</td>
<td>17.4</td>
<td>19.1</td>
<td>16.7</td>
<td>15.6</td>
<td>39.7</td>
</tr>
</tbody>
</table>

The predicted noise level at a standardised wind speed of 10m/s for this site in the noise impact assessment model is 32.6 dB(A). This is lower than the IoA model predicted level of 41.9 dB(A). The EIS model used a ground factor of G = 1.0, the RPS model uses the IoA recommended ground factor of G = 0.5. The level predicted in the EIS model is an L90 value and considers the Ballycadden turbines only. These factors do not however account for the significant difference between the model results.

Turbines T1 and T2 are shown to have the greatest impact on noise levels from the wind farm at Site 08.

The impact on noise levels at the site from all four wind farms are shown in Table 4-2.

Table 4-2: Noise Levels from each wind farm – Site 08, All Wind Farms

<table>
<thead>
<tr>
<th>Wind Farm</th>
<th>Gibbet Hill (dB LAeq)</th>
<th>Knocknalour (dB LAeq)</th>
<th>Ballynancoran (dB LAeq)</th>
<th>Ballycadden (dB LAeq)</th>
<th>Total Noise Level at Site 08 (dB LAeq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gibbet Hill</td>
<td>26.0</td>
<td>27.9</td>
<td>37.1</td>
<td>39.7</td>
<td>41.9</td>
</tr>
</tbody>
</table>

Cumulative noise levels at Site 08 are dominated by the turbines from Ballycadden wind farm. The difference in the noise level contribution between Ballynancoran and Ballycadden wind farm is less than 3 dB and therefore Ballynancoran wind farm is also having a significant impact on noise levels at Site 08. As the noise levels attributable to Knocknalour and Gibbet Hill at Site 08 are 10 dB(A) lower than Ballycadden, Knocknalour and Gibbet Hill wind farms are not having any significant impact on cumulative noise levels at Site 08.
4.3.2 Site 09

The overall noise level result and contribution of each turbine at the Ballycadden wind farm to this noise level is shown in Table 4-3.

Table 4-3: Noise Level Results – Site 09, Ballycadden Turbines

<table>
<thead>
<tr>
<th>T1 (dB LAeq)</th>
<th>T2 (dB LAeq)</th>
<th>T4 (dB LAeq)</th>
<th>T5 (dB LAeq)</th>
<th>T6 (dB LAeq)</th>
<th>T7 (dB LAeq)</th>
<th>T8 (dB LAeq)</th>
<th>T9 (dB LAeq)</th>
<th>T10 (dB LAeq)</th>
<th>Total Ballycadden (dB LAeq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.9</td>
<td>27.2</td>
<td>36.5</td>
<td>35.1</td>
<td>30.7</td>
<td>21.7</td>
<td>30</td>
<td>14.1</td>
<td>27.1</td>
<td>41.5</td>
</tr>
</tbody>
</table>

The predicted noise level at a standardised wind speed of 10m/s at night time for this site in the EIS model is 35.1 dB(A). This is lower than the IoA model predicted level of 41.7 dB(A). The EIS model used a ground factor of G = 1.0, the RPS model uses the IoA recommended ground factor of G = 0.5. The level predicted in the EIS model is an L90 value.

Turbines T4 and T5 are shown to have the greatest impact on noise levels from the wind farm at Site 09.

The impact on noise levels at the site from all four wind farms are shown in Table 4-4.

Table 4-4: Noise Levels from each wind farm – Site 09, All Wind Farms

<table>
<thead>
<tr>
<th>Gibbet Hill (dB LAeq)</th>
<th>Knocknalour (dB LAeq)</th>
<th>Ballynancoran (dB LAeq)</th>
<th>Ballycadden (dB LAeq)</th>
<th>Total Noise Level at Site 09 (dB LAeq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.6</td>
<td>18.1</td>
<td>18.4</td>
<td>41.5</td>
<td>41.7</td>
</tr>
</tbody>
</table>

Noise levels at Site 09 are dominated by the turbines from Ballycadden wind farm. The difference in the noise level contribution between Ballycadden wind farm and the other three wind farms is greater than 10 dB and therefore these wind farms are having no impact on noise levels at Site 09.

4.3.3 Site 10

The overall noise level result and contribution of each turbine at the Ballycadden wind farm to this noise level is shown in Table 4-5.

Table 4-5: Noise Level Results – Site 10, Ballycadden Turbines

<table>
<thead>
<tr>
<th>T1 (dB LAeq)</th>
<th>T2 (dB LAeq)</th>
<th>T4 (dB LAeq)</th>
<th>T5 (dB LAeq)</th>
<th>T6 (dB LAeq)</th>
<th>T7 (dB LAeq)</th>
<th>T8 (dB LAeq)</th>
<th>T9 (dB LAeq)</th>
<th>T10 (dB LAeq)</th>
<th>Total Ballycadden (dB LAeq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.6</td>
<td>19.9</td>
<td>21.2</td>
<td>24.3</td>
<td>30.6</td>
<td>35.6</td>
<td>33.1</td>
<td>37.2</td>
<td>39.1</td>
<td>43.2</td>
</tr>
</tbody>
</table>
The predicted noise level at a standardised wind speed of 10m/s at night time for this site in the noise impact assessment model is 38.2 dB(A). This is lower than the model predicted level of 43.4 dB(A). The EIS model used a ground factor of $G = 1.0$, the RPS model uses the IoA recommended ground factor of $G = 0.5$. The level predicted in the EIS model is an L_{90} value. Turbine 10 is shown to have the greatest impact on noise levels from the wind farm at Site 10.

Turbines T9 and T10 are shown to have the greatest impact on noise levels from the wind farm at Site 10.

The impact on noise levels at the site from all four wind farms are shown in Table 4-6.

<table>
<thead>
<tr>
<th>Gibbet Hill (dB L_{Aeq})</th>
<th>Knocknalour (dB L_{Aeq})</th>
<th>Ballynancoran (dB L_{Aeq})</th>
<th>Ballycadden (dB L_{Aeq})</th>
<th>Total Noise Level at Site 10 (dB L_{Aeq})</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.5</td>
<td>24.0</td>
<td>16.5</td>
<td>43.2</td>
<td>43.4</td>
</tr>
</tbody>
</table>

Noise levels at Site 10 are dominated by the turbines from Ballycadden wind farm. The difference in the noise level contribution between Ballycadden wind farm and the other three wind farms is greater than 10 dB and therefore these wind farms are having no impact on noise levels at Site 10.

4.3.4 Site 11

The overall noise level result and contribution of each turbine at the Ballycadden wind farm to this noise level is shown in Table 4-7.

<table>
<thead>
<tr>
<th>T1 (dB L_{Aeq})</th>
<th>T2 (dB L_{Aeq})</th>
<th>T4 (dB L_{Aeq})</th>
<th>T5 (dB L_{Aeq})</th>
<th>T6 (dB L_{Aeq})</th>
<th>T7 (dB L_{Aeq})</th>
<th>T8 (dB L_{Aeq})</th>
<th>T9 (dB L_{Aeq})</th>
<th>T10 (dB L_{Aeq})</th>
<th>Total Ballycadden (dB L_{Aeq})</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.6</td>
<td>37.2</td>
<td>37.7</td>
<td>40.3</td>
<td>41.3</td>
<td>36.6</td>
<td>36.2</td>
<td>28.2</td>
<td>25.6</td>
<td>46.8</td>
</tr>
</tbody>
</table>

The predicted noise level at a standardised wind speed of 10m/s at night time for this site in the noise impact assessment model is 41.8 dB(A). This is lower than the IoA model predicted level of 46.9 dB(A). The EIS model used a ground factor of $G = 1.0$, the RPS model uses the IoA recommended ground factor of $G = 0.5$. The level predicted in the EIS model is a L_{90} value. The difference in model results can therefore be accounted for.

Turbines T5 and T6 are shown to have the greatest impact on noise levels from the wind farm at Site 11.

The impact on noise levels at the site from all four wind farms are shown in Table 4-8.
Table 4-8: Noise Levels from each wind farm – Site 11, All Wind Farms

<table>
<thead>
<tr>
<th>Gibbet Hill (dB LAeq)</th>
<th>Knocknalour (dB LAeq)</th>
<th>Ballynancoran (dB LAeq)</th>
<th>Ballycadden (dB LAeq)</th>
<th>Total Noise Level at Site 11 (dB LAeq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.5</td>
<td>24.0</td>
<td>16.5</td>
<td>43.2</td>
<td>46.9</td>
</tr>
</tbody>
</table>

Noise levels at Site 11 are dominated by the turbines from Ballycadden wind farm. The difference in the noise level contribution between Ballycadden wind farm and the other three wind farms is greater than 11 dB and therefore these wind farms are having no impact on noise levels at Site 11.

4.3.5 Site 12

The overall noise level result and contribution of each turbine at the Ballycadden wind farm to this noise level is shown in Table 4-9.

Table 4-9: Noise Level Results – Site 12, Ballycadden Turbines

<table>
<thead>
<tr>
<th>T1 (dB LAeq)</th>
<th>T2 (dB LAeq)</th>
<th>T4 (dB LAeq)</th>
<th>T5 (dB LAeq)</th>
<th>T6 (dB LAeq)</th>
<th>T7 (dB LAeq)</th>
<th>T8 (dB LAeq)</th>
<th>T9 (dB LAeq)</th>
<th>T10 (dB LAeq)</th>
<th>Total Ballycadden (dB LAeq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.2</td>
<td>30.3</td>
<td>28.3</td>
<td>28</td>
<td>26.9</td>
<td>26</td>
<td>25.1</td>
<td>24.7</td>
<td>23.3</td>
<td>36.8</td>
</tr>
</tbody>
</table>

The predicted noise level at a standardised wind speed of 10m/s at night time for this site in the noise impact assessment model is 31.1 dB(A). This is lower than the IoA method model predicted level of 39.9 dB(A). Site 12 is located approximately 300m from the noise impact assessment model location. The EIS model used a ground factor of G = 1.0, the RPS model uses the IoA recommended ground factor of G = 0.5. The level predicted in the EIS model is a L_{90} value. This does not however account for the difference in model results.

Turbine T2 is shown to have the greatest impact on noise levels from the wind farm at Site 12.

The impact on noise levels at the site from all four wind farms are shown in Table 4-10.

Table 4-10: Noise Levels from each wind farm – Site 12, All Wind Farms

<table>
<thead>
<tr>
<th>Gibbet Hill (dB LAeq)</th>
<th>Knocknalour (dB LAeq)</th>
<th>Ballynancoran (dB LAeq)</th>
<th>Ballycadden (dB LAeq)</th>
<th>Total Noise Level at Site 12 (dB LAeq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.2</td>
<td>32.6</td>
<td>32.9</td>
<td>36.8</td>
<td>39.9</td>
</tr>
</tbody>
</table>

Noise levels at Site 12 are dominated by the turbines from Ballycadden wind farm. The difference in the noise level contribution between Ballycadden and Ballynancoran wind farm is 3.1 dB and therefore Ballynancoran wind farm is having a significant impact on noise levels at Site 12. The difference in noise levels between Ballycadden and Gibbet Hill and Knocknalour wind farms is less than 10dB. Therefore Gibbet Hill and Knocknalour wind farms are having some impact on noise levels at Site 12.
4.3.6 Overall Modelling Results

In general the levels predicted in the noise impact assessment for Ballycadden wind farm were lower than those predicted in the RPS model. In some cases this can be accounted for due to the fact that the EIS model used a ground attenuation factor of 1.0 whereas the RPS model used the IoA guidance factor of 0.5. The results presented in the EIS are L_{90} values which would also account for some of the difference in results between the two models. In some cases there is a significant difference between the predicted noise levels in the EIS and those predicted by the RPS model. The differences may be explained by the fact that the RPS model is a cumulative model of all four wind farms, whereas the EIS model only considered Ballycadden turbines. There would appear to be a significant underestimation in the EIS model when compared with current modelling practice.

The noise impact at specific locations due to specific wind turbines can be assessed from the model. In most cases a limited number of turbines dominate the impact.
5 DATA ANALYSIS

5.1 CALIBRATION

All equipment used for the noise monitoring surveys were checked by RPS to ensure that they were fit for purpose, in adequate working order and were calibrated to an accredited standard. All the sound level meters used are Class 1 Sound Level Meters which are calibrated in accordance with the requirements as specified in:

- BS 7580: Part 1: 1997; or
- ICE 60651 and 60804 Type 1; or

All meters and the acoustic calibrators were externally calibrated through an Accredited Calibration process. The Accredited Calibration process provides calibration that is approved by independent audit by national accreditation authorities.

The RPS Calibration Procedure (Procedure No: RPS – 104) was complied with to ensure that an adequate system of calibration traceability was maintained for RPS owned instrumentation/equipment.

All calibration certificate details are provided in Appendix A. All noise meters were field checked in advance of the survey and all meters were calibrated before and after the survey using a calibrator to an accuracy of ± 0.3dB.

No instances of a significant variation in calibration levels before or after a measurement period was noted.

Noise levels for compliance purposes are generally in excess of 35 dB(A) so no corrections for instrument self-noise were necessary.

5.2 DATA QUALITY CONTROL

Survey data from the measurements was downloaded from the Secure Digital card used in the noise meter and a backup copy was made of the raw data. The raw data was stored in Bruel & Kjaer Measurement Partner Suite file format.

Measuring 14 sites continuously led to some technical issues with the equipment. This did not impact on the accuracy of the data but did mean that data for some periods could not be recovered. A running list of data collected from site and backed up onto hard disc was maintained throughout the measurement period. At the end of the initial five week period it emerged that due to technical difficulties (batteries running flat, Secure Digital card faults, etc.) some data could not be recovered. Additional monitoring was carried out for a sixth week to ensure sufficient data was collected during this phase.
As outlined in Section 3.10 monitoring was carried out for an initial five week period, then for an interim period of fifteen weeks on three sites and finally for a three week period in November/December 2016. Due to the constrained nature of the interim period some data was not recovered and it was not possible to extend the interim period prior to the final three week monitoring period. Data was collected with an average contracted recovery rate of 97% over the separate 5, 15, and 3 week periods.

5.3 DATA VALIDATION

As outlined in Section 5.3.1, measuring wind turbine noise requires the specific sound of the wind turbines to be isolated from the ambient sound, which includes all sound at the measurement location including distant sounds such as traffic and nearby sounds from human activity.

Wind farm operators are only responsible for noise caused by the wind turbines. In order to isolate noise emanating from the wind farm, data filtering was carried out to exclude data that was not considered to be relevant. Filtering of data was carried out in accordance with the Institute of Acoustics Supplementary Guidance (SGN) Note 5: Post Completion Measurements. The guidance states that the following can be carried out during data analysis:

- ‘Filter out any periods when rainfall may have affected the results’ (see SGN2)
- Unless there is any particular requirement to measure day-time noise levels (i.e. complaint during these periods) it may be useful to filter out all data except that measured between 2300 and 0400 when competing noise (including early morning birdsong and traffic) would be at a minimum. Evening measurements may also be sufficiently affected by spurious sources, depending on the background noise character of the locality.’

As the measurements were carried out at night some data was measured close to the noise floor of the instrumentation. In order to avoid this data having an impact on data trend lines it was also filtered out.

5.3.1 Filtering non-Wind Farm Noise

Weather stations were established at Sites 03 and 13 recording local wind speed and direction along with rainfall events. The data for the rainfall was aggregated so that if rain was recorded on either Site 03 or Site 13 all data was excluded for that period.

From a preliminary noise analysis of the data it was found that data for the period 22:00 hrs to 04:00 hrs provided sufficiently clear wind turbine noise for preliminary analysis. Earlier than 22:00 hrs resulted in significant anthropogenic sound and after 04:00 hrs birdsong tended to dominate the soundscape. During the period 06:00 hrs to 20:00 hrs there was a generally high level of sound unrelated to the wind farms that tended to mask the wind farm noise. Figure 5.1 shows an aggregated measurement over a 10 day period indicating the average number of seconds in a 10 minute period in which tones were detected using the one third octave band method, i.e. if a tone were detected for a 1 second period it is reflected in the plot at the time of day it occurred. As illustrated in Figure 5.1 the vast majority of tones occur during the day time. From an examination of the frequency profiles these tones are not attributable to wind farm noise.
Similarly an analysis of the aggregated presence of Low Frequency noise is plotted against the time of day in which it occurred in Figure 5.2. This illustrates that Low Frequency noise is present throughout the day and is significantly lower at night when wind turbine noise is the dominant noise source. This is in agreement with the fact that natural and other human activities (e.g. traffic, agriculture, industry, etc.) are sources of low frequency noise that are greater than those arising from wind farms.

A filter of night time (22:00 to 04:00hrs) was applied to all data in order to isolate wind farm noise only. The data collected during this period was then examined for both tonal and low frequency content.
Following the data download and subsequent processing steps, analysis of the data was carried out for the parameters stated in Section 1.1. Metrics such as L_{Aeq} and L_{A90} were examined for validity and consistency with wind turbine noise. Where unusual levels were recorded a range of techniques were used, as far as practicable, to isolate, as far as practicable, noise being examined as wind farm noise only.

Wind speed analysis was carried out in accordance with the Institute of Acoustics Supplementary Guidance Note 4: Wind Shear for the document “A Good Practice Guide to the Application of ETSU-R-97 for the Assessment and Rating of Wind Turbine Noise”. The roughness length used was the one provided in the EIS, i.e. 0.05m. All wind speeds presented in this report are corrected for wind shear unless otherwise stated.

5.4.1 L_{Aeq} or L_{A90}

Wind Turbine noise is different from other noise sources. With most noise sources measurements are taken under fair weather conditions, i.e. light winds. In the case of wind turbine noise measurements must of necessity be taken in windy conditions and the noise level varies with those wind conditions. At lower wind speeds the difference between L_{Aeq} and L_{A90} can be significant, particularly if noise unrelated to wind turbine operation is included in the data.

L_{Aeq} tends to be sensitive to peaks in the noise signal, such as the passing of an individual vehicle or a single loud call from an animal. It thus tends to include a significant proportion of non-wind farm noise. L_{A90} is reflective of noise levels that are relatively steady, such as wind farm noise.

IoA Working Group, IoA(2016), states:
‘The Noise Working Group is agreed that the $L_{A90,10 min}$ descriptor should be used for both the background noise and the wind farm noise, and that when setting limits it should be borne in mind that the $L_{A90,10 min}$ of the wind farm is likely to be about 1.5-2.5 dB(A) less than the L_{Aeq} measured over the same period. The use of the $L_{A90,10 min}$ descriptor for wind farm noise allows reliable measurements to be made without corruption from relatively loud, transitory noise events from other sources’.

This reinforces the original research finding from ETSU (1997) which arrived at the same conclusion. Wind turbine noise, excluding AM, is relatively steady in nature. In order to isolate wind turbine noise only measurements should be carried out using the L_{A90} metric. For the purpose of this report a 3 dB correction based on the Wexford County Development Control Standards for Wind Farms was applied. If AM is treated separately a correction penalty can be added.

5.4.1.1 Statistical comparisons of L_{Aeq} and L_{A90} at Sites 03 and 13

Long duration datasets were collected at Site 03 and Site 13 and these were analysed to compare L_{Aeq} measurements to L_{A90} measurements. Figure 5.3 and Figure 5.4 illustrate the relationship between L_{Aeq} and L_{A90}. Both are plotted for the night-time period along with a normalised wind turbine noise curve for illustration purposes. The characteristic shape of a noise curve for a large pitch controlled wind turbine is that it rises to a plateau at a wind speed of 8 to 10 metres per second. Measured wind turbine noise would be expected to follow this characteristic shape.

In the figures it is notable that the L_{A90} data clusters about this type of curve whereas the L_{Aeq} levels do not follow the pattern and appear to be more randomly distributed. This confirms the IoA Working Group position regarding the use of a L_{A90} measurement for wind turbine noise. In seeking to attribute noise levels specific to wind turbine noise the case is readily made using the L_{A90} metric, whereas it is not so clear using the L_{Aeq} metric.

Note in both cases however that at wind speeds greater than 10m/s the L_{Aeq} levels continue to rise and are unrelated to wind turbine noise.

![Figure 5.3: Statistical comparison of L_{Aeq} and L_{A90} at Site 03](image)
5.5 TONAL ANALYSIS

The assessment of the presence of tones was carried out using the methodology described in Section 2.10.1. The primary method of analysis used was the objective one third octave method.

A data matrix of sound pressure levels at each one third octave band against date time was created where each record represents a 10 minute interval. Intervals that are considered day-time are removed leaving night only (22:00 – 04:00 hrs).

In each 10 minute interval the level of each one third octave band is compared to the band above and below it. A tone is detected if the amplitude of a third octave band is sufficiently greater than both the third octave band above and below it. The difference in the amplitude must be greater at lower frequencies (15 dB) compared to higher frequencies (5 dB) as set out in Table 5-1.

Table 5-1: One Third Octave Band differences indicating the presence of a tone

<table>
<thead>
<tr>
<th>Frequency Band</th>
<th>Delta dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 160 Hz</td>
<td>15</td>
</tr>
<tr>
<td>160 – 400 Hz</td>
<td>8</td>
</tr>
<tr>
<td>Over 400 Hz</td>
<td>5</td>
</tr>
</tbody>
</table>

The reference method using Fast Fourier Transform (FFT) analysis was carried out on selected data. The reference method is the objective method set out in Annex C of ISO1996-2:2007.
5.6 LOW FREQUENCY NOISE

As outlined in Section 2.10.2 Low Frequency noise levels indoors from external sources depend on the external noise level from those sources, the noise insulation of the structure of the building and the internal room dimensions. It is difficult to measure Low Frequency noise indoors over long periods and the measurement methodology has a significant bearing on the result. As a consequence there is no agreement other than several internal measurement locations may be required simultaneously to determine the Low Frequency noise level in a room.

For this study Low frequency noise content was assessed using one-third octave band (10-160Hz) spectra using the thresholds and sound insulation values set out in Table 5-2.

Table 5-2: Low Frequency Noise levels

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Danish correction</th>
<th>RPS correction</th>
<th>DEFRA (internal)</th>
<th>RPS limits (external)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LZeq 10Hz</td>
<td>4.9</td>
<td>0</td>
<td>92</td>
<td>92</td>
</tr>
<tr>
<td>LZeq 12.5Hz</td>
<td>5.9</td>
<td>0</td>
<td>87</td>
<td>87</td>
</tr>
<tr>
<td>LZeq 16Hz</td>
<td>4.6</td>
<td>0</td>
<td>83</td>
<td>83</td>
</tr>
<tr>
<td>LZeq 20Hz</td>
<td>6.6</td>
<td>0</td>
<td>74</td>
<td>74</td>
</tr>
<tr>
<td>LZeq 25Hz</td>
<td>8.4</td>
<td>0</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>LZeq 31.5Hz</td>
<td>10.8</td>
<td>1</td>
<td>56</td>
<td>57</td>
</tr>
<tr>
<td>LZeq 40Hz</td>
<td>11.4</td>
<td>3</td>
<td>49</td>
<td>52</td>
</tr>
<tr>
<td>LZeq 50Hz</td>
<td>13</td>
<td>5</td>
<td>43</td>
<td>48</td>
</tr>
<tr>
<td>LZeq 63Hz</td>
<td>16.6</td>
<td>7</td>
<td>42</td>
<td>49</td>
</tr>
<tr>
<td>LZeq 80Hz</td>
<td>19.7</td>
<td>9</td>
<td>40</td>
<td>49</td>
</tr>
<tr>
<td>LZeq 100Hz</td>
<td>21.2</td>
<td>11</td>
<td>38</td>
<td>49</td>
</tr>
<tr>
<td>LZeq 125Hz</td>
<td>20.2</td>
<td>13</td>
<td>36</td>
<td>49</td>
</tr>
<tr>
<td>LZeq 160Hz</td>
<td>21.2</td>
<td>15</td>
<td>34</td>
<td>49</td>
</tr>
</tbody>
</table>

A data matrix of unweighted sound level at each one third octave band against date and time was created where each record represents a 10 minute interval. Intervals that are considered day-time are removed leaving night only (22:00 – 04:00 hrs). The value of each interval at each one third octave band is checked against the University of Salford internal guidelines adjusted for external measurements by RPS as set out in Table 5-2 and exceedances recorded.

5.7 AMPLITUDE MODULATION

As outlined in Section 2.10.3 the UK Institute of Acoustics (IoA) Amplitude Modulation Working Group (AMWG) has developed a method for analysing and rating AM (IoA AMWG, 2016). RPS developed Matlab code to process WAV files and calculate a rated AM level in accordance with the IoA method. As this methodology was released during the measurement period, it was necessary to develop a mechanism for evaluating AM noise during the course of the project.
The AMWG has also produced an example of an implementation of the routine described in the IoA AMWG report. This was used to benchmark an implementation developed by RPS using Matlab.

5.7.1 Benchmarking RPS Matlab Implementation of IoA Method for Rating AM

In order to validate the RPS implementation a series of validation tests were carried out on sample waveforms. Three sample waveforms were collected from three different turbine types; Enercon E82 2.3 MW, Vestas V52 0.85MW and a Siemens SWT3.0-101 3 MW at three wind farms unrelated to this project. Data was collected in the form of 100ms third octave band data and WAV recordings. Measurements were carried out using a Bruel & Kjaer model 2250 noise meter with sound recording capability.

The data was analysed in two ways and the results were compared as follows:

- **Path A**: One third octave values measured using a Bruel & Kjaer 2250 noise level meter were analysed using the IoA method for rating AM (vers. 1.3); and
- **Path B**: WAV recordings were made simultaneously by the noise level meter were analysed using the RPS implementation.

5.7.2 AM Signal Processing

Three test signals are considered, referred to as ‘Enercon’, ‘Vestas’ and ‘Siemens’. The test signals are each of 10 minutes duration.

‘Path A’ consists of the following steps:

1. The 1/3-octave unweighted L_{Aeq} values produced by Bruel & Kjaer software are A-weighted.
2. The 1/3-octave values are aggregated into the three gross frequency bands used in the IoA methodology, i.e. 50-200 Hz, 100-400 Hz and 200-800 Hz to produce L_{Aeq} values.
3. The L_{Aeq} values in each gross frequency band are processed by the IoA AM rating method to produce an overall AM value for each file.

The RPS implementation (‘Path B’) takes a recorded noise measurement (WAV file) and carries out the entire processing chain in the Matlab environment.

5.7.3 AM Code Validation Results

Table 5-3 to **Table 5-5** summarise the results for the three files. Overall AM ratings are given for both signal processing Paths, for each of the three gross frequency bands, for each of the three test files.
Table 5-3: Summary results for AM rating evaluations Test case 1 Enercon Turbines

<table>
<thead>
<tr>
<th>Site</th>
<th>AM rating for each gross frequency band</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enercon</td>
<td></td>
</tr>
<tr>
<td>50-200 Hz</td>
<td>100-400 Hz</td>
</tr>
<tr>
<td>Path A</td>
<td>5.03 dB</td>
</tr>
<tr>
<td>Path B</td>
<td>5.09 dB</td>
</tr>
</tbody>
</table>

Table 5-4: Summary results for AM rating evaluations Test case 2 Vestas Turbines

<table>
<thead>
<tr>
<th>Site</th>
<th>AM rating for each gross frequency band</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vestas</td>
<td></td>
</tr>
<tr>
<td>50-200 Hz</td>
<td>100-400 Hz</td>
</tr>
<tr>
<td>Path A</td>
<td>-1</td>
</tr>
<tr>
<td>Path B</td>
<td>-1</td>
</tr>
</tbody>
</table>

Table 5-5: Summary results for AM rating evaluations Test case 3 Siemens Turbines

<table>
<thead>
<tr>
<th>Site</th>
<th>AM rating for each gross frequency band</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siemens</td>
<td></td>
</tr>
<tr>
<td>50-200 Hz</td>
<td>100-400 Hz</td>
</tr>
<tr>
<td>Path A</td>
<td>6.32</td>
</tr>
<tr>
<td>Path B</td>
<td>6.23</td>
</tr>
</tbody>
</table>

The maximum value for each file across the gross frequency bands is highlighted in red in the tables. Note: a figure of ‘-1’ indicates that AM was not declared, because there were insufficient 10-second blocks containing prominent AM in the signal.

As can be seen from Table 5-3 to Table 5-5, the maximum difference between Paths A and B is 0.16 dB across all measurements. Among the maximum values across the three gross frequency bands, the maximum difference is 0.12 dB. Based on these results the RPS implementation is suitable for use directly on WAV recorded files.

5.7.4 Additional filtering on Amplitude Modulation Data

WAV files were analysed in accordance with the (IoA AMWG, 2016), using the RPS implementation. Audio recordings were pre-filtered using the criteria outlined in Section 5.3.1, i.e. taken in the period 22:00 hrs to 04:00 hrs period and excluding rain events.

When measuring wind farm noise for compliance purposes it is necessary to isolate wind farm noise from other sources. Even though sound recordings were pre-screened significant numbers of files recorded traffic events, animal noises such as dogs barking and other unrelated sounds. Additional screening to remove files containing sounds unrelated to wind farm operation were screened out using the following criteria:
1. If $L_{eq} > L_{A10}$
 Wind Farm noise tends to be relatively steady state. Even with significant AM components, the L_{eq} for a 10 minute WAV file should be lower than the L_{A10} for the same period.

2. If the $L_{eq} - L_{A90} > 6$
 WAV files with a significant difference between the L_{eq} and the L_{A90} contain short duration, high energy noise events, such as a vehicle passing quickly through the area.

3. Amplitude at 800 Hz < 1000 Hz or higher
 Wind turbine noise and AM in particular tend to occur at frequencies below 800 Hz. Where birdsong (which can be measured as AM) is contained in the recordings a filter was used to remove any recordings where the high frequency content was greater than the frequencies of interest.

An additional filtration criteria where $L_{A10} > L_{A90} + 10$ dB was found to have no effect on the data so was not used. These filtration mechanisms facilitated the isolation of non-wind farm noise from the files of interest and are effective in removing non-wind farm related noise events.
6 RESULTS

The following is a summary of the data for the Ballycadden wind farm. Results are based on and compared to night-time thresholds. From a preliminary analysis of the data it was clear that using day-time data would be problematic as it was difficult to isolate wind turbine noise only. In all cases if the night-time thresholds are met, day-time levels will also be in compliance.

6.1 PERIODS EXAMINED

As outlined in Section 5.3.1 night refers to 22:00 hrs to 04:00 hrs. This truncated night period was chosen following preliminary analysis of the optimum period in which to isolate wind farm noise. Note that considerably more data is available for Site 09 and Site 13 than the other four sites. This is due to the fact that monitoring continued at these sites throughout the full monitoring period. At Sites 08, 10, 11 and 12 monitoring stopped after five weeks in the summer and was carried out for three weeks in the winter period.

Table 6-1: Aggregate periods of data per site

<table>
<thead>
<tr>
<th>SITE</th>
<th>Site 08</th>
<th>Site 09</th>
<th>Site 10</th>
<th>Site 11</th>
<th>Site 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of 10 minute intervals Monitored</td>
<td>9061</td>
<td>22186</td>
<td>9536</td>
<td>9690</td>
<td>10500</td>
</tr>
<tr>
<td>Number of 10 minute intervals during the night period</td>
<td>2270</td>
<td>5520</td>
<td>2383</td>
<td>2419</td>
<td>2628</td>
</tr>
</tbody>
</table>

As can be seen from Table 6-1 the number of periods for which data is available is very large and even when rainfall and other exclusions are carried out, sufficient data remains to draw statistically robust conclusions. Percentage figures presented in the tables below are calculated based on the total night-time period monitored.

6.2 WEATHER DATA

Wexford County Council sought assistance from the four wind farm operators in the area. The following wind farm data was made available to RPS from the wind farms:

1. Wind speed measured at the nacelle and corrected for ‘free field’ conditions.
2. Wind Direction measured at the nacelle and corrected for ‘free field’ conditions.
3. Turbine output data.
4. Turbine interruption data (due to faults or grid output limits).

This data is commercially sensitive and was provided on a strictly confidential basis. RPS has used the data to prepare this report and no longer holds raw data as provided by the wind farm operators in accordance with the terms under which it was provided to us.
Wind speed and direction is highly variable and this is one of the reasons the monitoring period was extended. The windrose for Rosslare meteorological station, the closest to the site for which long term average data is available, is shown in Figure 6.1. Wind is predominantly from the southwest with lower occurrences of northerly or southeasterly winds.

![Windrose](image)

Figure 6.1: Met Eireann windrose for Rosslare station 1957-1996

When determining the wind speed and direction at any particular time, the average wind speed from all turbines in the relevant wind farm were averaged. This was used to create a windrose of wind speed and direction (Figure 6.2). There was little variation between turbines in any particular 10 minute intervals with a median standard deviation across turbines is small and thus a gross mean is appropriate.
Figure 6.2: Windrose of Ballycadden weather data (all turbines all time)

6.2.1 Wind speed and direction

Data from Sites 03 and 13 rarely included localised wind from the north, whereas the wind farm data and long term Rosslare data indicated a more frequent occurrence. This is probably due to localised topographical sheltering effects even at 10m above ground. Using the turbine hub height wind direction also provided reliable wind direction data for all 14 sites.

Due to these site specific issues with the wind direction data it was decided to use the wind direction data from the wind farms to correlate with noise levels. This provides a more representative picture of ‘downwind’ conditions. Based on a comparison of the hub height wind direction and the localised wind direction on Sites 03 and 13 localised measurements could not provide a reliable indication of when the turbines were upwind of the measurement location.

Sites 03 and 13 for example rarely experienced localised wind from the north, whereas the wind farm data and long term Rosslare data indicated a more frequent occurrence. This is probably due to localised topographical sheltering effects even at 10m above ground. Using the turbine hub height wind direction also provided reliable wind direction data for all 14 sites.

Wind speed and direction for the Ballycadden wind farm was averaged and plotted as a wind rose in Figure 6.2. This indicates that a range of wind speeds from calm to 22m/s was measured over the survey period. Wind direction was predominantly from the southwest as would be expected but data was collected for all directions.

Wind speeds were standardised to 10m in accordance with IoA Guidance. Wind shear values were converted using roughness length utilised in the EIS, i.e. 0.05m. The use of a ‘standardised’ wind speed measurement height is necessary to correlate with the international standard used for the measurement and analysis of acoustic emissions from wind turbines.
6.3 NOISE LOGS

The noise logs provided were analysed for correlations between specific wind conditions and noise ‘events’. There was little correlation between the wind direction and reported noise at the monitored location. There did appear to be an important correlation in reported annoyance and large difference in the wind speed at the turbines and the local wind speed. This would correlate with periods of high wind shear.

The average wind speed from all turbines in the relevant wind farm was compared to the average wind speed of the nearest one or two turbines. There was no significant difference in the average windspeed recorded for the wind farm in total and the average wind speed recorded for the nearest turbine(s). Therefore the average wind speed for the entire windfarm was used.

From an analysis of the wind logs noise events are related to periods of high wind shear rather than wind speed or direction. The noise logs also referred to low frequency noise ‘whump’ and other terms that relate to AM type noise rather than low frequency noise in isolation.

6.4 ATTENDED MONITORING

In order to provide first hand information on noise levels arising on the measurement sites an experienced acoustician attend at the sites on dates between June and October to listen to the noise sources audible at each location.

<table>
<thead>
<tr>
<th>Date</th>
<th>Time (BST)</th>
<th>Location</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>15th June</td>
<td>23:15</td>
<td>Site 09</td>
<td>No significant AM or tonal</td>
</tr>
<tr>
<td>16th June</td>
<td>05:10</td>
<td>Site 11</td>
<td>AM evident</td>
</tr>
<tr>
<td>16th August</td>
<td>13:00</td>
<td>Site 11</td>
<td>AM clearly audible, no significant tonal</td>
</tr>
<tr>
<td>13th October</td>
<td>00:34</td>
<td>Site 12</td>
<td>AM noted</td>
</tr>
<tr>
<td>13th October</td>
<td>01:14</td>
<td>Site 11</td>
<td>AM Clearly audible, dogs barking</td>
</tr>
<tr>
<td>13th October</td>
<td>01:57</td>
<td>Site 10</td>
<td>AM noted</td>
</tr>
<tr>
<td>13th October</td>
<td>22:13</td>
<td>Site 09</td>
<td>No significant noise</td>
</tr>
<tr>
<td>13th October</td>
<td>22:53</td>
<td>Site 08</td>
<td>AM noted</td>
</tr>
</tbody>
</table>

Measurements were taken during weather conditions that were thought likely to give rise to adverse noise components such as tonal noise, low frequency noise and/or AM. In order to adequately assess the noise arising from the wind farms the noise monitoring surveys were carried out during night hours (23:00 hrs - 07:00 hrs) when noise levels from other sources (birdsong, traffic etc.) were at a minimum. This allowed for the isolation of wind farm noise. Other non-wind farm noise sources during the survey were excluded during data analysis.
6.5 LIMITS BASED ON EIS STATEMENTS

As outlined in Section 2 there are no expressed noise limits in the Planning Conditions imposed by Wexford County Council. The noise level limits are set by reference to levels predicted in the EIS.

RPS has examined the planning documents provided by Wexford County Council and is of the opinion that the relevant site specific noise level limit for Ballycadden wind farm based on Table 10.1 of the EIS for each of the measurement sites is presented in Table 6-3:

Table 6-3: Site specific noise level limit for Ballycadden wind farm based on Table 10.1 of the EIS

<table>
<thead>
<tr>
<th>SITE</th>
<th>Site 08</th>
<th>Site 09</th>
<th>Site 10</th>
<th>Site 11</th>
<th>Site 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise level at 10m/s</td>
<td>32.6</td>
<td>35.1</td>
<td>38.2</td>
<td>41.8</td>
<td>31.1*</td>
</tr>
</tbody>
</table>

*This limit was obtained from the nearest EIS location to Site 12, located 300m from Site 12

Because some of the measured noise levels are close to background noise levels it is necessary to correct for background noise. A noisemeter detects the cumulative noise level of wind turbine noise and background noise. In order to isolate wind turbine noise only, background noise levels must be subtracted logarithmically from the overall noise level.

In addition it is necessary to ask whether these limits are to be measured as L_{Aeq} or L_{A90} and whether ‘strict’ compliance is required, i.e. if a single noise measurement exceeds these levels is the wind farm non-compliant? RPS can only present the data as measured and provide an opinion as to whether ‘substantial compliance’ or ‘strict compliance’ is achieved.

6.5.1 Compliance

In determining compliance the evaluation has been made using the L_{A90} measurement adjusted for background noise levels with 3 dB added to obtain a L_{Aeq} noise level, $(L_{A90} – \text{background noise}) + 3\text{dB}$. The basis for using this metric is set out in Section 5.4.1 where the case for using a L_{A90} measurement in order to isolate wind turbine noise from other frequently occurring sources. This is referred to as ‘corrected L_{Aeq}’ in the following sections.

Condition 11 of the planning permission refers to the noise levels predicted in the Ballycadden EIS. RPS has examined Table 10.1 of the EIS and RPS is of the opinion that the appropriate site specific noise limit for each of the measurement sites adjacent to the Ballycadden wind farm are those set out in Table 6-3. In order to evaluate compliance with these levels consideration was only given to night-time noise levels which were pre-filtered for rain events. The L_{A90} levels adjusted for background noise are also provided in Table 6-4.

Table 6-4: Exceedance of the levels stated in Table 10.1 of the EIS

<table>
<thead>
<tr>
<th>SITE</th>
<th>Site 08</th>
<th>Site 09</th>
<th>Site 10</th>
<th>Site 11</th>
<th>Site 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIS Limit (site specific L_{A90}) dB</td>
<td>32.6</td>
<td>35.1</td>
<td>38.2</td>
<td>41.8</td>
<td>31.1</td>
</tr>
<tr>
<td>Number of intervals where L_{A90} exceeded Site Specific level (night period)</td>
<td>215</td>
<td>779</td>
<td>331</td>
<td>222</td>
<td>503</td>
</tr>
<tr>
<td>Number of intervals where $(L_{A90}-BG)$ was over Site Specific level (night period)</td>
<td>164</td>
<td>712</td>
<td>329</td>
<td>219</td>
<td>413</td>
</tr>
</tbody>
</table>
6.5.2 Compliance with Prediction Curves of the EIS

The noise model details, given as an attachment to the EIS, set out an ETSU-R-97 type curve for different locations. In the EIS the predicted noise level at these particular sites was set out as a curve on a plot against background noise. The background noise monitoring report showed background noise levels to be in the range of 25-30dB. For the purpose of this report background noise levels were taken to be 25dB. In four cases the EIS sites were close enough to the sites for this study to make direct comparisons. The curves for these sites are reproduced in the figures below (red line) and compared against the L90 measured level as this is the metric presented in the EIS.

The solid red line represents the site specific predicted level in the EIS and the dashed red line represents the level indicated in the conclusion of the EIS. Site 12 was not considered in the EIS and therefore it is not possible to make a direct comparison.

The background noise level data was reported in the EIS as LA90 levels. This facilitates correcting the LA90 for background noise level.

6.5.3 Site 08

Figure 6.3: Site 08 L90-BG compared to EIS Trendline (Location H39)

The LA90 minus BG Noise exceeds the levels predicted in the EIS at wind speeds lower than 6m/s and in excess of 8m/s. The trendline does not follow the expected curve for wind turbine noise referred to in Section 5.4.1 due to a significant level of ‘outlying’ data. The noise level recordings for Site 08 indicate significant levels of non-wind farm related noise occur at this location. From this data it is not possible to state that the trendline is in compliance as there appears to be a significant level of data unrelated to the wind farm in the plot. It is possible that some of the exceedances may relate to wind farm noise but the site can be regarded as being in substantial compliance.
6.5.4 Site 09

Figure 6.4: Site 09 L_{A90}-BG compared to EIS Trendline (Location H49)

The L_{A90} minus BG Noise trendline exceeds the levels predicted in the EIS at wind speeds in excess of 7.5 m/s. It is likely that the data at higher wind speeds may not be directly attributable to the wind farm due to the shape of the trendline.

6.5.5 Site 10

Figure 6.5: Site 10 L_{A90}-BG compared to EIS Trendline (Location H14)

The L_{A90} minus BG Noise trendline exceeds the predicted noise levels at wind speeds in excess of 7 m/s. However the nature of the trendline indicates that this is not due to noise from the wind farm and this site can be considered to be in substantial compliance.
6.5.6 Site 11

Figure 6.6: Site 11 $L_{A90} - BG$ compared to EIS Trendline (Location H25)

The L_{A90} minus BG Noise trendline slightly exceeds the predicted noise levels at wind speeds in the range of 7-8m/s. From attendance on site and an examination of noise recording data significant non-wind farm noise arises at this location. This site can be considered to be in substantial compliance.
6.5.7 Compliance with the WCDCSWF

The Wexford County Development Control Standards states that:

Permitted maximum noise levels at noise sensitive residences shall be:

\[45 \text{ dB } L_{eq}(A) \text{ from the nearest machine between the hours of 0800 and 2000, Monday to Sunday and 43 dB } L_{eq}(A) \text{ at all other times.} \]

*To allow for reliable measurements } L_{eq} \text{ levels can be converted to } L_{A90} \text{ levels (for wind farm noise) with the relationship } L_{A90} = L_{eq} - 3. \]

For the purpose of compliance the night time level of 43 dB } L_{Aeq} \text{ at all residential locations is taken as the threshold. As stated in Section 5.3.1 it is necessary to evaluate this against } L_{A90} \text{ levels adjusted for background noise and converted to } L_{Aeq} \text{ levels.}

In determining compliance with the levels set out in the evaluation has been made on the basis of the } L_{A90} \text{ measurement adjusted for background noise levels, with 3 dB added to obtain a } L_{Aeq} \text{ noise level, } (L_{A90} - \text{background noise}) + 3\text{dB. The basis for using this metric is set out in Section 5.4.1 where the case for using a } L_{A90} \text{ measurement in order to isolate wind turbine noise from other frequently occurring sources. Data was filtered according to the methods outlined in Section 5.3.1 and 5.7.4 before counting.}

Table 6-5: Count of 10 minute intervals exceeding 43 dB

<table>
<thead>
<tr>
<th>SITE</th>
<th>Site 08</th>
<th>Site 09</th>
<th>Site 10</th>
<th>Site 11</th>
<th>Site 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wexford Limit dB } L_{Aeq}</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>Number of intervals where } L_{eq} \text{ exceeded 43 dB (night)}</td>
<td>11</td>
<td>156</td>
<td>172</td>
<td>352</td>
<td>51</td>
</tr>
<tr>
<td>Number of intervals where } L_{A90} \text{ exceeded 43 dB (night)}</td>
<td>0</td>
<td>32</td>
<td>27</td>
<td>85</td>
<td>3</td>
</tr>
<tr>
<td>Number of intervals where } (L_{A90}-BG)+3 \text{ exceeded 43 dB (night)}</td>
<td>0</td>
<td>(0.0%)</td>
<td>115</td>
<td>(2.1%)</td>
<td>189</td>
</tr>
</tbody>
</table>

As can be seen from the table there are a number of exceedances of the night-time limit. In order to determine if these exceedances were related to wind turbine noise a sample of the files was examined for ‘other’ noise sources. The results of this sampling indicated that a significant number of the events reported in the table were due to factors other than wind turbine noise, e.g. cars passing during the measurement period, animal noises, etc.

Sites 08, 09 and 12 are substantially compliant with the levels set out in the conclusion of the EIS. Sites 10 and 11 have significant levels of noise above the threshold. An examination of the noise recordings for these sites indicates that little of this is attributable to the wind farm and these sites are compliant depending on the threshold set for ‘substantial’ compliance. A feature of noise in the Site 11 area in particular is that there are a lot of animal noise sources including dogs barking which influence the noise levels.
6.6 DECLG WIND ENERGY DEVELOPMENT GUIDELINES

The Department of Environment, Community and Local Government (DECLG) ‘Wind Energy Development Guidelines’, [WEDG(2006)] sets a night-time limit of 43 dB based on a L_{A90} metric. The L_{A90} levels were filtered to night-time levels only and excluded rain events. The number of exceedances of this level is reported in Table 6-6.

Table 6-6: Comparison with WEDG (2006) night time limit

<table>
<thead>
<tr>
<th>SITE</th>
<th>Site 08</th>
<th>Site 09</th>
<th>Site 10</th>
<th>Site 11</th>
<th>Site 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLG WEDG(2006), Night-time $dB(A)$ Based on L_{A90}</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>Number of intervals where L_{A90} exceeded 43 dB (night)</td>
<td>0 (0.0%)</td>
<td>32 (0.6%)</td>
<td>27 (1.3%)</td>
<td>85 (3.7%)</td>
<td>3 (0.2%)</td>
</tr>
</tbody>
</table>

As can be seen from the table there are a number of exceedances of the night-time limit when using the L_{A90} metric as advised in the guidelines. In order to determine if these exceedances were related to wind turbine noise only a sample of the files was examined for ‘other’ noise sources. The results of this sampling indicated that a number of the events reported in the table were due to factors other than wind turbine noise.

All sites can be considered in substantial compliance with the WEDG (2006) night-time limit when measured using a L_{A90} metric.

6.7 INTERNATIONAL GUIDANCE AND OTHER STANDARDS

Comparisons are made with guidance and standards from four other countries, the UK, South Australia, Canada and Denmark in the following sections.

6.7.1 UK

The UK standard as outlined in Section 2.6.1 is based on ETSU-R-97. Such curves were provided in the EIS and have been compared with measured data in Section 6.5.2. In this case however the comparison is made against L_{A90} levels as set out in ETSU-R-97.

The pre-construction background noise measurements at lower wind speeds were less than 30 dB(A). On that basis that the most conservative interpretation of ETSU-R-97 was taken, the lower limit of 35 dB(A) would apply until the background noise level exceeded 30 dB(A) at which point the limit becomes background noise plus 5 dB(A) during quiet periods. A fixed limit of 43 dB(A) at night applies separately.
On the basis of a conservative interpretation of ETSU-R-97, Site 08 is in substantial compliance with UK guidance levels based on the pre-construction background noise levels during quiet periods. The wind farm meets ETSU-R-97 criteria at night. The shape of the trendline does however suggest that this is representative of background noise rather than noise from the wind farm.

On the basis of a conservative interpretation of ETSU-R-97, Site 09 does not comply with UK guidance levels at corrected wind speeds greater than 7m/s based on the pre-construction background noise levels during quiet periods. The wind farm meets ETSU-R-97 criteria at night.
Figure 6.9: Site 10 Corrected L_{A90} against UK ETSU guidelines

On the basis of a conservative interpretation of ETSU-R-97, Site 10 does not comply with UK guidance levels at corrected wind speeds greater than 6m/s based on the pre-construction background noise levels during quiet periods. The wind farm meets ETSU-R-97 criteria at night. The shape of the trendline shown may indicate that these noise levels are due to background noise rather than noise from the wind farm.

Figure 6.10: Site 11 Corrected L_{A90} against UK ETSU guidelines

On the basis of a conservative interpretation of ETSU-R-97, Site 11 does not comply with UK guidance levels at corrected wind speeds greater than 5m/s based on the pre-construction background noise levels during quiet periods. The wind farm meets ETSU-R-97 criteria at night.
On the basis of a conservative interpretation of ETSU-R-97, Site 12 does not comply with UK guidance levels at corrected wind speeds greater than 9.5m/s based on the pre-construction background noise levels during quiet periods. The wind farm meets ETSU-R-97 criteria at night. The shape of the trendline suggests that the noise here is due to background noise rather than wind farm noise.

In the case of Sites 09 and 11 the trendline through the data conforms to the expected curve for wind turbine noise. In the case of Sites 08, 10 and 12 the trendline does not conform to the expected wind farm noise curve. Noise unrelated to the wind farm is likely to distort the noise measurements in those cases. In all cases the noise levels attributable to the wind farm at night-time are below 43 dB(A). In the case of site 08 the noise levels are below the quiet period limit of 35 dB. All other sites exceed this level at various wind speeds; however in the case of Sites 09, 10 and 12 this is not due to wind farm noise.

South Australia

‘The predicted equivalent noise level (L_{Aeq,10}), adjusted for tonality in accordance with these guidelines, should not exceed:

- 40dB(A) at relevant receivers in localities in other zones, or
- the background noise (L_{A90,10}) by more than 5dB(A),

whichever is the greater, at all relevant receivers’.

Due to the low background noise levels measured in the area the threshold for all sites is set at 40 dB(A) for the purpose of the South Australia Noise Standards.
Data plotted using both L_{Aeq} and L_{A90}, corrected for background plus 3 dB along with the trendline through the data, exceed the 40 dB(A) threshold at Site 08 at corrected wind speeds in excess of 8m/s. However the trendline is not the expected shape for indicating wind farm noise which indicates that noise levels are due to background noise rather than wind farm noise. The exceedance is marginal as the data at higher wind speeds is likely to contain noise from sources other than the wind farm. Site 08 is therefore substantially compliant with the South Australian noise standard.
Data plotted using both L_{Aeq} and L_{A90}, corrected for background plus 3 dB along with the trendline through the data, exceed the 40 dB(A) threshold at Site 09 for wind speeds in excess of 8 m/s. However, the trendline is not the expected shape for indicating wind farm noise which indicates that noise levels are due to background noise rather than wind farm noise.
Data plotted using both L_{Aeq} and L_{A90}, corrected for background plus 3 dB along with the trendline through the data, exceed the 40 dB(A) threshold at Site 10 at corrected wind speeds in excess of 6.5 m/s. However, the trendline is not the expected shape for indicating wind farm noise, which indicates that noise levels are due to background noise rather than wind farm noise.
Figure 6.18: Site 11 L_{Aeq} data against background noise levels and South Australian guidelines

Figure 6.19: Site 11 Corrected L_{A90} against South Australian guidelines

Data plotted using both L_{Aeq} and L_{A90}, corrected for background plus 3 dB along with the trendline through the data, exceed the 40 dB(A) threshold at Site 11 for wind speeds in excess of 5.5m/s.
Data plotted using L_{Aeq} exceed the 40 dB(A) threshold at Site 12 at corrected wind speeds in excess of 10 m/s. Data plotted using L_{A90} exceed the 40 dB(A) threshold at corrected wind speeds in excess of 11 m/s. In both cases the exceedance is marginal as the data at higher wind speeds is likely to contain noise from sources other than the wind farm.
6.7.3 Canada and Denmark

The Danish Regulations limit noise at the most noise-exposed point in outdoor living area no more than 15 metres from dwellings in open countryside:

A. 44 L_{eq} dB(A) at a wind speed of 8 m/s.
B. 42 L_{eq} dB(A) at a wind speed of 6 m/s.

In Canada the situation is more complex in that each province regulates noise independently. At a wind speed of 6 m/s the Canadian levels are lower [40 dB(A)] than those permitted in Denmark [42 dB(A)]. The levels are higher [45 dB(A)] than those permitted at a wind speed of 8 m/s [44 dB(A)] in Denmark. The Canadian Provinces of Manitoba, New Brunswick and Ontario permit levels of 51 dB(A) at wind speeds of 10 m/s.

The levels are illustrated on the following plots, Canada in Orange, Denmark in Red.
Data plotted using both $L_{A_{eq}}$ and L_{A90}, corrected for background plus 3 dB along with the trendlines through the data, both substantially meet the Danish and Canadian thresholds at Site 08.
Data plotted using both L_{Aeq} and L_{A90}, corrected for background plus 3 dB along with the trendlines through the data, both substantially meet the Danish and Canadian thresholds at Site 09.
Figure 6.26: Site 10 L_{Aeq} data against Danish guidelines

Figure 6.27: Site 10 L_{A90} minus BG noise + 3dB data against Danish guidelines

Data plotted using both L_{Aeq} and L_{A90}, corrected for background plus 3 dB along with the trendlines through the data, both substantially meet the Danish and Canadian thresholds at Site 10 for a wind speed of 6m/s. The trendline marginally exceeds the Danish thresholds at a wind speed of 8m/s. The trendline marginally exceeds the Canadian thresholds at a wind speed of 8m/s.
Data plotted for L_{Aeq} along with the trendline through the data substantially meet the Danish threshold at a wind speed of 6m/s and the Canadian threshold at 8m/s. The Canadian threshold at 6m/s and the Danish threshold at 8m/s are exceeded for L_{A90}-BG+3dB.

The L_{A90} corrected for background plus 3 dB along with the trendlines through the data both exceed the Danish and Canadian thresholds. The majority of the data is not however attributable to the wind farm.
Data plotted using both L_{Aeq} and L_{A90}, corrected for background plus 3 dB along with the trendlines through the data, both substantially meet the Danish and Canadian thresholds at Site 12.

It can be seen from the plots that when using the L_{Aeq} metric the trendline does not conform to the expected shape for wind turbine noise in all cases except for Site 11. The L_{A90} metric also does not present in the expected shape in all cases. In the case of Sites 10 the trendlines exceed the Danish and Canadian thresholds at 8m/s. The L_{Aeq} trendline for Site 11 exceeds the Canadian threshold at 6m/s and the Danish threshold at 8m/s. The L_{A90}-BG+3dB exceeds the Canadian and Danish thresholds at 6 and 8m/s for Site 11. Due to the presence of significant non-wind farm noise sources, it is likely that all sites are substantially compliant.
6.8 WORLD HEALTH ORGANISATION NOISE GUIDELINES FOR NIGHT TIME NOISE

The WHO limit for night-time noise is 40 dB L_{night, outside}. This metric as outlined in Section 2.7 is calculated on an annual average basis. Theoretically this would require continuous monitoring for an entire year to provide a definitive answer. For this project Sites 03 and 13 were monitored for 24 weeks and the other sites for 8 weeks.

The modelling for the EIS was carried out at a worst case wind speed of 10m/s. The L_{A90} –background + 3dB at wind speed of 10 m/s (derived from trendline) are reported in Table 6-7 along with the calculated average level over the monitoring period.

The average night time levels over the period for which it is available was calculated and is presented in Table 6-7.

Table 6-7: Average night time levels over the full monitoring period

<table>
<thead>
<tr>
<th>Site number</th>
<th>Average L_{A90} –BG + 3dB over the full measurement period</th>
<th>L_{A90} –BG + 3dB at wind speed of 10 m/s (derived from EIS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site 08</td>
<td>34.4</td>
<td>47.4</td>
</tr>
<tr>
<td>Site 09</td>
<td>33.7</td>
<td>43.7</td>
</tr>
<tr>
<td>Site 10</td>
<td>37.0</td>
<td>49.3</td>
</tr>
<tr>
<td>Site 11</td>
<td>38.0</td>
<td>39.4</td>
</tr>
<tr>
<td>Site 12</td>
<td>32.0</td>
<td>38.9</td>
</tr>
</tbody>
</table>

The data indicates that the levels are consistent within the WHO thresholds.

6.9 TONAL ANALYSIS

As outlined in Section 5.3.1 significant tonal noise, unrelated to the wind farm, was detected using the methodology described in Section 2.10.1 during the day period.

One third octave analysis for tonal measurements was used on data filtered to maximise the likelihood of detection. The number of 10 minute periods in which a tone was detected is reported in Table 6-8.

Table 6-8: Number of intervals in which a tone was detected using third octaves

<table>
<thead>
<tr>
<th>SITE</th>
<th>Site 08</th>
<th>Site 09</th>
<th>Site 10</th>
<th>Site 11</th>
<th>Site 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of night periods examined</td>
<td>9061</td>
<td>22186</td>
<td>9536</td>
<td>9690</td>
<td>10500</td>
</tr>
<tr>
<td>Number of intervals where a tone was detected (night)</td>
<td>89</td>
<td>2</td>
<td>69</td>
<td>1</td>
<td>38</td>
</tr>
</tbody>
</table>
The extent of occurrence of tonal noise using the one third octave method was not significant and many of the tones detected were at higher frequencies unrelated to wind turbine noise.

6.9.1 Attended Tonal Noise Measurements

The noise logs indicated the presence of a tone and attendance on site by an acoustician in May, June, August and October confirmed a tone in the region of 160 Hz was present on occasions. Using the subjective method levels of tonal noise were not detected close to the Ballycadden wind farm. Of the different site visits the most prominent tone noted and analysed using FFT narrow band analysis occurred at Site 03 on 16th August at 03:46 hrs. The results of this FFT analysis are presented in Figure 6.32 and Table 6-9.

![FFT Analysis Plot](image)

Figure 6.32 FFT Analysis Plot

As can be seen on the plot a tone is detected at 164.1 Hz. This sound is above the threshold of hearing for pure tones (~16 dB at 160 Hz). The objective method for pure tonal assessment applies a penalty based on the difference in energy between the tone and the associated masking or ‘critical’ band.

Table 6-9: FFT Analysis Result

<table>
<thead>
<tr>
<th>Site 03</th>
<th>Tone Frequency (Hz)</th>
<th>Critical Bandwidth (Hz)</th>
<th>Critical Bandwidth Start (Hz)</th>
<th>Tone Penalty (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16/08/2016 03:46:30</td>
<td>164.1</td>
<td>100</td>
<td>114.1</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Table 6-9 shows the tone frequency detected and the corresponding critical band. The energy in the tone is compared to the energy in the critical band using the Joint Nordic Method II. The penalty is
calculated at 0.0 dB as the tone is not sufficiently prominent to warrant a penalty. This is consistent with experience while on site generally where this tone was audible but not prominent enough to warrant a penalty.

6.9.2 Unattended Tonal Noise Measurements

The noise logs made several references to the presence of tonal noise. As the objective method using third octave band measurements did not indicate the presence of tones related to wind farm noise, further analysis was carried out using the reference (FFT) method.

In order to isolate periods in which a tone related to wind farm noise was likely to arise the one third octave band results were reanalysed using a lower threshold difference between bands, i.e. the thresholds in one third octave frequency bands from 160 Hz to 400 Hz were reduced to 5 dB between bands. This is a departure from the standard methodology and likely to identify worst case conditions. This identified an additional number of time periods in which tones might arise. No time periods were identified for Site 02. A number of these periods for each site were subjected to FFT analysis and the results are set out in **Table 6-10**.

<table>
<thead>
<tr>
<th>SITE</th>
<th>Date</th>
<th>Site 02</th>
<th>Prominent Tone Frequency Hz</th>
<th>Tone Level dB</th>
<th>Masking Level dB</th>
<th>Penalty Kt dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>01/08/2016</td>
<td>22:00</td>
<td>62.5</td>
<td>9.5</td>
<td>8.2</td>
<td>0.0</td>
</tr>
<tr>
<td>8</td>
<td>19/07/2016</td>
<td>02:10</td>
<td>59.4</td>
<td>11.1</td>
<td>4.5</td>
<td>4.6</td>
</tr>
<tr>
<td>8</td>
<td>30/07/2016</td>
<td>00:20</td>
<td>159.4</td>
<td>6.4</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>9</td>
<td>22/07/2016</td>
<td>01:30</td>
<td>159.4</td>
<td>1.5</td>
<td>-1.7</td>
<td>1.2</td>
</tr>
<tr>
<td>9</td>
<td>23/07/2016</td>
<td>03:11</td>
<td>159.4</td>
<td>6.4</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>9</td>
<td>23/07/2016</td>
<td>02:03</td>
<td>46.9</td>
<td>17.4</td>
<td>11.2</td>
<td>4.2</td>
</tr>
<tr>
<td>10</td>
<td>05/12/2016</td>
<td>01:00</td>
<td>No tone detected</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>01/12/2016</td>
<td>01:40</td>
<td>162.5</td>
<td>0.7</td>
<td>-1.3</td>
<td>0.0</td>
</tr>
<tr>
<td>11</td>
<td>01/12/2016</td>
<td>23:23</td>
<td>162.5</td>
<td>9.0</td>
<td>1.8</td>
<td>5.2</td>
</tr>
<tr>
<td>12</td>
<td>17/10/2016</td>
<td>02:01</td>
<td>46.9</td>
<td>9.0</td>
<td>5.5</td>
<td>1.4</td>
</tr>
<tr>
<td>12</td>
<td>22/07/2016</td>
<td>03:26</td>
<td>53.1</td>
<td>1.0</td>
<td>1.5</td>
<td>0.0</td>
</tr>
</tbody>
</table>

As can be seen from the table even when FFT analysis is applied to what is likely to be worst case conditions, the occasions on which a tonal penalty is warranted is limited. Prominent tones are audible in the 150-170 Hz region but in some cases sufficiently audible to warrant a penalty using the ISO 1996-2:2007 methodology.

Tonal noise, while noted, is only sufficient to warrant a penalty using the reference method on occasions. At Sites 08 and 10 the prominent tones < 100 Hz detected were not related to the wind farm and can be discounted. The ~160 Hz tonal noise detected at Sites 09, 09 and 11 were at a low level and are not attributable to the Ballycadden wind farm. Tonal noise cannot therefore be considered a substantial issue in the overall context.
Sites 08, 09 and 11 are showing tones related to wind farm noise. Tones occur on limited occasions and therefore it is not possible to say that there is a consistent tonal problem with the wind farm.

6.10 LOW FREQUENCY NOISE

As outlined in Section 5.6 Low Frequency Noise was quantified using the University of Salford criteria corrected for outdoor measurements. The results are presented in Table 6-11.

Table 6-11: Low Frequency Noise Detections

<table>
<thead>
<tr>
<th>SITE</th>
<th>Site 08</th>
<th>Site 09</th>
<th>Site 10</th>
<th>Site 11</th>
<th>Site 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of intervals where Low Frequency noise was detected (all day)</td>
<td>5573</td>
<td>103</td>
<td>5170</td>
<td>748</td>
<td>4018</td>
</tr>
<tr>
<td>Number of intervals where Low Frequency noise was detected (night)</td>
<td>929</td>
<td>0</td>
<td>618</td>
<td>81</td>
<td>491</td>
</tr>
</tbody>
</table>

The incidence of Low Frequency Noise when measured according to the University of Salford thresholds is low and generally not attributable to the wind turbines. This is not surprising given the noise spectrum of the wind turbines. Low frequency noise cannot therefore be considered a substantial issue in the overall context, however AM needs to be viewed separately.

6.11 AMPLITUDE MODULATION

AM is a distinct feature of wind turbine noise. Until recently no agreed methodology was available to measure it accurately. Some researchers have tried to measure AM directly using low frequency microphones or geophones. The results have been inconsistent and inaccurate and led to debate regarding low frequency noise emissions from wind turbines. What was being described as low frequency noise in many cases is likely to have been amplitude modulation mis-presented. AM is a low frequency phenomenon as it occurs at the ‘blade passing frequency’ and multiples of it. The blade passing frequency refers to the number of times per second that one of the turbine blades passes the tower. For large wind turbines this is approximately once per second or 1Hz. The wind turbines do not inherently create noise at this frequency. The noise from the wind turbine at low to mid-frequencies (from 50Hz to 800Hz) changes in amplitude/volume and creates the characteristic ‘thumping’ sound associated with wind turbines.

A methodology for quantifying AM is now agreed. The IoA methodology for determining AM provides a consistent and robust method of determining the extent of the phenomenon. The methodology was developed and agreed by a Working Group comprising all sides of the debate. It was finally published following extensive consultation and modification in August 2016.

RPS recorded WAV files and carried out preliminary filtration on these files as described in Sections 5.3.1 and 5.7.4. The IoA methodology has a further filtering step whereby if AM is not detected in a sufficiently high number of 10 second periods in the overall 10 minute period the 10 minute period is not considered as warranting a penalty.
The determination of what is an acceptable level of AM is still in development as outlined in Section 2.10.3. The UK DECC recommends using the IoA metric for quantifying AM and proposes testing and review of an additional penalty of 3 to 5 dB on a sliding scale for unacceptable or excessive levels of AM. It is noted that the AM control has only been designed for use with new planning applications, and applicability for use in nuisance investigations on existing wind turbine sites, was not considered by DECC. Guidance on AM control is awaited in Ireland.

The UK guidance on AM was published while this study was underway and is not applicable to existing wind turbine sites. It is nonetheless the only robust method for quantifying AM and at least provides some indication of the scale of the problem. In order to quantify the level of AM at each site twelve 10-minute periods were randomly selected from the data which was pre-filtered to isolate conditions under which AM was most likely to be detected.

The data was selected by isolating the conditions under which AM attributable to the wind farm was likely to be measured. Each 10-minute period was allocated a random number and the periods with the largest random number were selected. Two hours of data (twelve 10-minute periods) were selected for each site. The results are presented in Table 6-12 to Table 6-16.

Table 6-12: Site 08 Amplitude Modulation Detections

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>AM Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/07/2016</td>
<td>22:40</td>
<td>5.2</td>
</tr>
<tr>
<td>19/11/2016</td>
<td>01:20</td>
<td>4.7</td>
</tr>
<tr>
<td>23/11/2016</td>
<td>02:20</td>
<td>7.9</td>
</tr>
<tr>
<td>22/11/2016</td>
<td>22:20</td>
<td>-1</td>
</tr>
<tr>
<td>29/07/2016</td>
<td>02:20</td>
<td>6</td>
</tr>
<tr>
<td>19/11/2016</td>
<td>23:10</td>
<td>6.4</td>
</tr>
<tr>
<td>27/11/2016</td>
<td>02:10</td>
<td>7</td>
</tr>
<tr>
<td>01/07/2016</td>
<td>23:50</td>
<td>-1</td>
</tr>
<tr>
<td>26/06/2016</td>
<td>03:10</td>
<td>-1</td>
</tr>
<tr>
<td>21/11/2016</td>
<td>01:40</td>
<td>5.3</td>
</tr>
<tr>
<td>03/12/2016</td>
<td>01:30</td>
<td>7</td>
</tr>
<tr>
<td>06/12/2016</td>
<td>23:20</td>
<td>-1</td>
</tr>
</tbody>
</table>

As can be seen from Table 6-12 AM in excess of 3 dB is a regular feature in the noise at Site 08.

Table 6-13: Site 09 Amplitude Modulation Detections

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>AM Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>05/10/2016</td>
<td>22:40</td>
<td>5.8</td>
</tr>
<tr>
<td>09/11/2016</td>
<td>23:30</td>
<td>3.9</td>
</tr>
<tr>
<td>25/06/2016</td>
<td>01:50</td>
<td>3.1</td>
</tr>
</tbody>
</table>
Ballycadden Wind Farm Noise Monitoring Report

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>AM Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>17/07/2016</td>
<td>02:50</td>
<td>3.5</td>
</tr>
<tr>
<td>18/11/2016</td>
<td>03:40</td>
<td>3.3</td>
</tr>
<tr>
<td>07/10/2016</td>
<td>01:20</td>
<td>5.8</td>
</tr>
<tr>
<td>25/06/2016</td>
<td>02:40</td>
<td>2.8</td>
</tr>
<tr>
<td>22/11/2016</td>
<td>01:20</td>
<td>-1</td>
</tr>
<tr>
<td>29/07/2016</td>
<td>02:00</td>
<td>4.8</td>
</tr>
<tr>
<td>23/10/2016</td>
<td>03:30</td>
<td>3.8</td>
</tr>
<tr>
<td>25/07/2016</td>
<td>02:20</td>
<td>4</td>
</tr>
<tr>
<td>04/10/2016</td>
<td>00:30</td>
<td>4.4</td>
</tr>
</tbody>
</table>

As can be seen from Table 6-13 AM in excess of 3 dB is a consistent feature in the noise at Site 09.

Table 6-14: Site 10 Amplitude Modulation Detections

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>AM Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>19/11/2016</td>
<td>02:30</td>
<td>6.3</td>
</tr>
<tr>
<td>29/07/2016</td>
<td>00:30</td>
<td>5.4</td>
</tr>
<tr>
<td>03/12/2016</td>
<td>23:30</td>
<td>3.2</td>
</tr>
<tr>
<td>28/11/2016</td>
<td>01:00</td>
<td>-1</td>
</tr>
<tr>
<td>27/11/2016</td>
<td>23:50</td>
<td>4</td>
</tr>
<tr>
<td>28/11/2016</td>
<td>02:20</td>
<td>-1</td>
</tr>
<tr>
<td>14/07/2016</td>
<td>01:40</td>
<td>5.2</td>
</tr>
<tr>
<td>18/11/2016</td>
<td>22:50</td>
<td>6.3</td>
</tr>
<tr>
<td>23/11/2016</td>
<td>02:00</td>
<td>3.6</td>
</tr>
<tr>
<td>28/11/2016</td>
<td>22:10</td>
<td>-1</td>
</tr>
<tr>
<td>03/12/2016</td>
<td>23:20</td>
<td>-1</td>
</tr>
<tr>
<td>09/07/2016</td>
<td>23:20</td>
<td>2</td>
</tr>
</tbody>
</table>

As can be seen from Table 6-14 AM in excess of 3 dB is a regular feature in the noise at Site 10.

Table 6-15: Site 11 Amplitude Modulation Detections

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>AM Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>18/07/2016</td>
<td>00:20</td>
<td>-1</td>
</tr>
<tr>
<td>05/08/2016</td>
<td>02:40</td>
<td>3</td>
</tr>
<tr>
<td>17/07/2016</td>
<td>00:30</td>
<td>3.4</td>
</tr>
<tr>
<td>02/08/2016</td>
<td>02:30</td>
<td>-1</td>
</tr>
<tr>
<td>07/12/2016</td>
<td>01:10</td>
<td>6.9</td>
</tr>
<tr>
<td>02/12/2016</td>
<td>22:30</td>
<td>3.1</td>
</tr>
<tr>
<td>04/12/2016</td>
<td>02:40</td>
<td>5.8</td>
</tr>
<tr>
<td>24/11/2016</td>
<td>03:50</td>
<td>4.3</td>
</tr>
</tbody>
</table>
As can be seen from Table 6-15 AM in excess of 3 dB is a consistent feature in the noise at Site 11.

Table 6-16: Site 12 Amplitude Modulation Detections

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>AM Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>17/11/2016</td>
<td>02:40</td>
<td>-1</td>
</tr>
<tr>
<td>08/07/2016</td>
<td>02:00</td>
<td>-1</td>
</tr>
<tr>
<td>25/11/2016</td>
<td>00:50</td>
<td>3.9</td>
</tr>
<tr>
<td>07/12/2016</td>
<td>23:30</td>
<td>-1</td>
</tr>
<tr>
<td>17/11/2016</td>
<td>00:40</td>
<td>-1</td>
</tr>
<tr>
<td>28/11/2016</td>
<td>03:10</td>
<td>3.3</td>
</tr>
<tr>
<td>25/11/2016</td>
<td>02:30</td>
<td>4.6</td>
</tr>
<tr>
<td>13/07/2016</td>
<td>22:20</td>
<td>4.5</td>
</tr>
<tr>
<td>19/11/2016</td>
<td>23:30</td>
<td>4.6</td>
</tr>
<tr>
<td>27/07/2016</td>
<td>02:50</td>
<td>3.9</td>
</tr>
<tr>
<td>29/06/2016</td>
<td>23:30</td>
<td>3.6</td>
</tr>
<tr>
<td>19/11/2016</td>
<td>01:30</td>
<td>2.4</td>
</tr>
</tbody>
</table>

As can be seen from Table 6-16 AM in excess of 3 dB is a regular feature in the noise at Site 12.

As can be seen in the tables above AM is a regular feature in the noise at all sites. Using the IoA methodology for quantifying AM the levels exceed 3 dB at all sites on an intermittent basis. The 3 dB threshold is currently a recommendation for new wind farm developments in the UK and may be revised as more information becomes available from measurements taken using the IoA methodology.

Currently there are no guidelines on AM control noise in Ireland. AM is also not regulated under the planning conditions imposed on Ballycadden wind farm.

An action for nuisance can be taken by issuing a notice of intent under section 108(3) of the Environmental Protection Agency Act, 1992, making a complaint to the District Court in relation to noise. To sustain a complaint noise must be such as to give ‘reasonable cause for annoyance’, which is further defined as:
‘so loud/so continuous/so repeated/of such duration or pitch/occurring at such times as to give reasonable cause for annoyance to the complainant or a person in any premises in the neighbourhood, or a person lawfully using a public place’.

In RPS’s opinion the overall noise levels (loudness) are in substantial compliance at all sites. As shown on Table 6-5 for Site 10 (7.9%) and Site 11 (18.6 %) the noise levels exceed 43 dB(A) during the night periods. It is not possible to attribute these exceedances to wind turbine noise alone but the likelihood is that some exceedances occur.

The ‘pitch’ includes such factors as low frequency and tonal noise which in RPS’ opinion are generally in control. No significant tonal noise was noted during the attended measurements near the Ballycadden wind farm. Using the internationally recognised Joint Nordic method for tonal analysis on unattended data, no significant penalties attributable to wind farm noise were warranted.

AM is effectively a repetitive change in the nature of the noise. There is currently no guideline on AM control in Ireland. Analysis for this report was carried out using recently published guidelines for new wind farm development in the UK. A sample of files analysed for AM using the IoA methodology yielded results which were higher than preliminary guidelines issued in the UK for new wind farm development.

The nature of AM noise is such that it is recognised as the type of noise that is likely to give reasonable cause for annoyance. While AM may be an issue when evaluated using UK criteria for new wind farm developments, no guidance is currently available in Ireland on AM. Based on preliminary UK guidance the levels of AM reported would have the effect of increasing the measured noise levels by 3 to 5 dB with a ‘rating’ penalty. Consideration must also be given to the fact that the wind farm was constructed prior to any guidelines being published.
7 CONCLUSIONS

RPS collected data on 14 sites over a period of 24 weeks from 22nd June 2016 to 9th December 2016. Overall data recovery for the period was over 95% for the five week summer period and the three week winter period. Data recovery for the intervening period was 78% on three sites. It was not possible to increase the recovery for the intervening period as the winter period followed immediately, with no lag. The data comprises noise measurement data, weather data and sound recordings (WAV files) and amounts to approximately 3 TB in total.

Data was analysed under several criteria for compliance with Planning Conditions and international practice on the control of wind farm noise. A sample of WAV files were further analysed to determine compliance with the latest UK guidance on AM, which was published while the monitoring was in progress.

7.1 PLANNING COMPLIANCE

Guidance is needed on the threshold for ‘compliance’ with planning conditions, particularly on whether or not a single exceedance for weather dependent noise levels is sufficient to warrant enforcement action. Based on other environmental regulation limits such as the Guidelines for Planning Authorities for Quarries and Ancillary Activities, the Surface Water Regulations and Air Quality Standards Regulations the principle of ‘Substantial’ compliance has been applied. No equivalent guidance on wind farm noise compliance has been provided to planning authorities.

The planning conditions relating to Ballycadden wind farm do not specify a particular noise level limit but require that the noise attributable to the wind farm conforms to the levels set out in the planning documents. In determining compliance it is necessary to demonstrate that the noise levels being reported are attributable to the wind farm only.

This report outlines the methodologies used to isolate wind turbine noise from other noise at the monitoring locations and concludes that the appropriate metric for compliance is based on the L_{A90} measurement, corrected for background noise and converted to L_{Aeq} using the 3 dB factor referenced in the EIS. In the case of Ballycadden this filtering was not sufficient to remove all non-wind farm noise. Further analysis was carried out on the noise recordings which confirmed that significant non-wind farm related noise determined the reported noise levels.

As set out in Section 2.1.1 RPS has taken the view that ‘substantial compliance’ is the appropriate basis for determining compliance in the case of wind farm noise. Using this metric and applying a tolerance for ‘Substantial’ Compliance, all sites are substantially compliant with the noise levels predicted in the EIS.

All sites are compliant with the levels set out in the conclusion of the EIS.
7.2 COMMENTARY RELATING TO OTHER GUIDELINES AND STANDARDS

7.2.1 WEDG (2006)

All sites can be considered in substantial compliance with the WEDG (2006) night-time limit when measured using a L_{A90} metric.

7.2.2 UK

Based on a conservative interpretation of the UK ETSU-R-97 Guidance document, the quiet period noise levels should be lower than 35 dB(A). It is clear from the plots in Section 6.7.1 that the trendline for all sites, except Site 08, exceeds the 35 dB(A) threshold for quiet periods. However in the case of sites 09, 10 and 12 this is due to wind farm noise. The noise level is in compliance with the ETSU-R-97 guideline for night-time noise at all sites.

7.2.3 South Australian

Data plotted using both L_{Aeq} and L_{A90} corrected for background plus 3 dB along with the trendline through the data exceed the South Australian 40 dB(A) threshold at all Sites. At Sites 08 and 12 the exceedance is marginal and if measured on a ‘substantial’ compliance basis these four sites may comply (Section 6.7.2). At sites 09 and 10 the trendline does not represent what you would expect for wind farm noise and therefore it is likely that the exceedance at both these sites is due to other noise sources. The exceedance at Site 11 indicates that Site 11 is not compliant.

7.2.4 Canada and Denmark

It can be seen from the plots that when using the L_{Aeq} metric the trendline does not conform to the expected shape for wind turbine noise in all cases except for Site 11. The L_{A90} metric also does not present in the expected shape in all cases. In the case of Site 10 the trendslines exceeds the Danish and Canadian thresholds at 8m/s. The L_{Aeq} trendline for Site 11 exceeds the Canadian threshold at 6m/s and the Danish threshold at 8m/s. The L_{A90}-BG+3dB exceeds the Canadian and Danish thresholds at 6 and 8m/s for Site 11. Due to the presence of significant non-wind farm noise sources, it is likely that all sites are substantially compliant.

7.2.5 World Health Organisation

The data indicates that the levels are consistently within the WHO thresholds (Section 6.8).

7.2.6 Tonal Analysis

An analysis of tones over the full monitoring period and narrow band analysis carried out. The objective assessment of this tone in accordance with BS4142:1997 and BS4142:2014 found that no tonal penalty was warranted (Section 6.9).

While tonal noise is audible, no significant tonal noise penalties are warranted using the objective method (ISO 1996-2:2007) of assessment. When worst case conditions were analysed using the
reference method (ISO 1996-2:2007) some tonal penalties were warranted on a limited number of occasions. Using worst case measurements a tone in the region of 160 Hz was found at sites 08, 09 and 11. The tone level (in dB) was extremely low in each case, indicating that the source was not Ballycadden wind farm. The wind farm is therefore not considered to emit tonal noise.

7.2.7 Low Frequency Noise

The incidence of Low Frequency Noise when measured according to the University of Salford thresholds is low and generally not attributable to the wind turbines. This is not surprising given the noise spectrum of the wind turbines (Section 6.10).

7.2.8 Amplitude Modulation

RPS used the IoA methodology to determine AM as it provides a consistent and robust method of determining the extent of the phenomenon. Two hours of worst case data were isolated and analysed using the IoA methodology. For the data analysed the AM results were found to exceed the 3dB threshold recommended in the UK for new wind farm developments (Section 6.11).

7.2.9 Likelihood of Noise Nuisance as per Section 108 of the EPA Act No. 7 of 1992.

There is no generally accepted threshold ‘level’ to support an action for nuisance from wind farm noise. An added difficulty in assessing possible nuisance is that the noise from wind farms can be infrequent with regards to tonal and low frequency noise detections. Recent research indicates that many of the issues relating to tonal and low frequency noise complaints may be attributable to AM.

Many of the issues relating to low frequency and tonal noise complaints can be attributed to AM. The IoA methodology provides (since August 2016) a reliable method for quantifying AM. The nature of AM noise is such that it is recognised internationally as the type of noise that is likely to give reasonable cause for annoyance. Analysis of a sample of WAV files for AM indicates the presence of excessive AM for a significant percentage of the night hours.

7.3 SUMMARY

Table 7-1 provides a summary of the analysis relating to planning compliance and Table 7-2 provides a summary of commentary relating to the other criteria set out in the tender document.
Table 7-1: Compliance with Planning Conditions - Summary

<table>
<thead>
<tr>
<th>Planning Conditions (a)</th>
<th>Criteria</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Based on the site specific noise predictions in the EIS</td>
<td>(L_{Aeq}) Day-time</td>
<td>All sites are substantially compliant with EIS as total noise levels include significant non-turbine noise</td>
</tr>
<tr>
<td></td>
<td>(L_{Aeq}) Night-time</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Planning Conditions (b)</th>
<th>Criteria</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Based on the EIS conclusion</td>
<td>(L_{Aeq}) Day-time</td>
<td>All sites are substantially compliant as total noise levels include significant non-turbine noise</td>
</tr>
<tr>
<td></td>
<td>(L_{Aeq}) Night-time</td>
<td></td>
</tr>
</tbody>
</table>

Table 7-2: Commentary on Other Criteria - Summary

<table>
<thead>
<tr>
<th>Other Criteria</th>
<th>Criteria</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLG Wind Energy Development Guidelines</td>
<td>(L_{A90}) Day-time</td>
<td>All sites are substantially compliant</td>
</tr>
<tr>
<td></td>
<td>(L_{A90}) Night-time</td>
<td></td>
</tr>
</tbody>
</table>

| ETSU-R-97 Guidance | \(L_{A90} \) Day-time | Site 11 not compliant at low wind speeds, other sites are substantially compliant with ETSU-R-97 as total noise levels include significant non-turbine noise |
|-------------------| \(L_{A90} \) Night-time |

| South Australia | \(L_{Aeq} \) | Site 11 not compliant at low wind speeds, other sites are substantially compliant as total noise levels include significant non-turbine noise |

| Denmark | \(L_{Aeq} \) | Substantially compliant at all sites. |

| Canada | \(L_{Aeq} \) | Substantially compliant at all sites. |

| WHO Guidelines for Night-time | \(L_{night, outside}(L_{Aeq}) \) | All sites are substantially compliant |

| Tonal Noise | One Third Octave and Joint Nordic methods | Some tones detected but not attributable to the wind farm |

| Amplitude Modulation | IoA Methodology | Significant AM detected. Levels in excess of 3 dB detected on all sites to varying degree |

| Section 108 of the EPA Act | | Noise levels generally not excessive, limited tonal and low frequency noise detected. Excessive AM detected to varying degree at all sites |
8 REFERENCES

BS 4142:1997 Method for Rating industrial noise affecting mixed residential and industrial areas.

BS 4142:2014 Methods for rating and assessing industrial and commercial sound

ETSU-R-97 (1997), The assessment and rating of noise from wind farms.

Hayes Mackenzie Partnership Ltd., (2006), The measurement of low frequency noise at three UK wind farms, Contract number W/45/00656/00/00 for the Department of Trade and Industry.

ISO 1996-1:2016 Acoustics — Description, measurement and assessment of environmental noise

Moorhouse, A., Waddington, D., Adams, M., (2011), Proposed criteria for the assessment of low frequency noise disturbance, Revision 1, Contract no. NANR45, DEFRA.

Denmark SO (2011), Statutory Order on noise from wind turbines, Order No. 1284 of 15th December 2011.

WSP- Parsons Brinckerhoff, 2016, Wind Turbine AM Review Phase 2 Report, Project no. 3514482A.
APPENDIX A

Calibration Certificates
CERTIFICATE OF CALIBRATION

No: CDK1339158 Page 1 of 10

CALIBRATION OF

Sound Level Meter: Brüel & Kjær Type 2250 No: 2479724 Id: - 2479724
Microphone: Brüel & Kjær Type 4189 No: 281993
Preamplifier: Brüel & Kjær Type ZC-0032 No: 17516
Supplied Calibrator: Brüel & Kjær Type 4231 No: 202652
Software version: BZ7222 Version 2.1 Pattern Approval: PTB1.63-4046158
Instruction manual: BE1712-18

CUSTOMER

Enfonic Ltd
Tecpro House
IDA Business & Technology Park
Dublin

CALIBRATION CONDITIONS

Preconditioning: 4 hours at 23°C ± 3°C
Environment conditions: See actual values in Environmental conditions sections.

SPECIFICATIONS

The Sound Level Meter Brüel & Kjær Type 2250 has been calibrated in accordance with the requirements as specified in IEC61672-1:2002 class 1. Procedures from IEC 61672-3:2006 were used to perform the periodic tests. The accreditation assures the traceability to the international units system SI.

PROCEDURE

The measurements have been performed with the assistance of Brüel & Kjær Sound Level Meter Calibration System 3630 with application software type 7763 (version 4.9 - DB: 4.90) by using procedure 2250-4189.

RESULTS

Calibration Mode: Calibration as received.

The reported expanded uncertainty is based on the standard uncertainty multiplied by a coverage factor k = 2 providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with EA-4/02 from elements originating from the standards, calibration method, effect of environmental conditions and any short time contribution from the device under calibration.

Date of calibration: 2014-11-21

Date of issue: 2014-11-21

M. Önder
Calibration Technician

Susanne Jørgensen
Approved Signatory

Reproduction of the complete certificate is allowed. Parts of the certificate may only be reproduced after written permission.
CERTIFICATE OF CALIBRATION

No: CDK1360944

Page 1 of 10

CALIBRATION OF

Sound Level Meter: Brüel & Kjær Type 2250
No: 2506117
Id: - 2506117

Microphone: Brüel & Kjær Type 4189
No: 2529734

Preamplifier: Brüel & Kjær Type ZC-0032
No: 16622

Supplied Calibrator: Brüel & Kjær Type 4231
No: 2460008

Software version: BZ7222 Version 2.1
Pattern Approval: PTB1.63-4046158

Instruction manual: BE1712-18

CUSTOMER

Enfonic Ltd
Tecpro House
IDA Business & Technology Park
Dublin

CALIBRATION CONDITIONS

Preconditioning: 4 hours at 23°C ± 3°C

Environment conditions: See actual values in Environmental conditions sections.

SPECIFICATIONS

The Sound Level Meter Brüel & Kjær Type 2250 has been calibrated in accordance with the requirements as specified in IEC61672-1:2002 class 1. Procedures from IEC 61672-3:2006 were used to perform the periodic tests. The accreditation assures the traceability to the international units system SI.

PROCEDURE

The measurements have been performed with the assistance of Brüel & Kjær Sound Level Meter Calibration System 3630 with application software type 7763 (version 4.9 - DB: 4.90) by using procedure 2250-4189.

RESULTS

Calibration Mode: Calibration as received.

The reported expanded uncertainty is based on the standard uncertainty multiplied by a coverage factor k = 2 providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with EA-4/02 from elements originating from the standards, calibration method, effect of environmental conditions and any short time contribution from the device under calibration.

Date of calibration: 2016-02-14

M. Önder
Calibration Technician

Date of issue: 2016-02-14

Susanne Jørgensen
Approved Signatory

Reproduction of the complete certificate is allowed. Parts of the certificate may only be reproduced after written permission.
CERTIFICATE OF CALIBRATION

No: CDK1605491

Page 1 of 10

CALIBRATION OF

Sound Level Meter: Brüel & Kjær Type 2250
Microphone: Brüel & Kjær Type 4189
Preamplifier: Brüel & Kjær Type ZC-0032
Supplied Calibrator: Brüel & Kjær Type 4231
Software version: BZ7222 Version 2.1
Instruction manual: BE1712-18

No: 2567756
Id: -
No: 2470482
No: -
No: 2626210

CUSTOMER

Enfonic Ltd
Tecpro House
IDA Business & Technology Park
Dublin

CALIBRATION CONDITIONS

Preconditioning: 4 hours at 23°C ± 3°C
Environment conditions: See actual values in Environmental conditions sections.

SPECIFICATIONS

The Sound Level Meter Brüel & Kjær Type 2250 has been calibrated in accordance with the requirements as specified in IEC61672-1:2002 class 1. Procedures from IEC 61672-3:2006 were used to perform the periodic tests. The accreditation assures the traceability to the international units system SI.

PROCEDURE

The measurements have been performed with the assistance of Brüel & Kjær Sound Level Meter Calibration System 3630 with application software type 7763 (version 4.9 - DB: 4.90) by using procedure 2250-4189.

RESULTS

Calibration Mode: Calibration as received.

The reported expanded uncertainty is based on the standard uncertainty multiplied by a coverage factor k = 2 providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with EA-4/02 from elements originating from the standards, calibration method, effect of environmental conditions and any short time contribution from the device under calibration.

Date of calibration: 2016-07-08
Date of issue: 2016-07-08

M. Önder
Calibration Technician

Susanne Jørgensen
Approved Signatory
CERTIFICATE OF CALIBRATION

No: CDK1359690
Page 1 of 10

CALIBRATION OF

Sound Level Meter: Brüel & Kjaer Type 2250
No: 2590440 Id: - 2590440
Microphone: Brüel & Kjaer Type 4189
No: 2589639
Preamplifier: Brüel & Kjaer Type ZC-0032
No: 16110
Supplied Calibrator: Brüel & Kjaer Type 4231
No: 2626210
Software version: BZ7222 Version 2.1
Pattern Approval: PTB1.63-4046158
Instruction manual: BE1712-18

CUSTOMER

Enfonic Ltd
Tecpro House
IDA Business & Technology Park
Dublin

CALIBRATION CONDITIONS

Preconditioning: 4 hours at 23°C ± 3°C
Environment conditions: See actual values in Environmental conditions sections.

SPECIFICATIONS

The Sound Level Meter Brüel & Kjaer Type 2250 has been calibrated in accordance with the requirements as specified in IEC61672-1:2002 class 1. Procedures from IEC 61672-3:2006 were used to perform the periodic tests. The accreditation assures the traceability to the international units system SI.

PROCEDURE

The measurements have been performed with the assistance of Brüel & Kjaer Sound Level Meter Calibration System 3630 with application software type 7763 (version 4.9 - DB: 4.90) by using procedure 2250-4189.

RESULTS

Calibration Mode: Calibration as received.

The reported expanded uncertainty is based on the standard uncertainty multiplied by a coverage factor k = 2 providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with EA-4/02 from elements originating from the standards, calibration method, effect of environmental conditions and any short time contribution from the device under calibration.

Date of calibration: 2015-12-12
Date of issue: 2015-12-12

M. Önder
Calibration Technician

Susanne Jørgensen
Approved Signatory

Reproduction of the complete certificate is allowed. Parts of the certificate may only be reproduced after written permission.
CERTIFICATE OF CALIBRATION

No: CDK1605511 Page 1 of 10

CALIBRATION OF

Sound Level Meter: Brüel & Kjær Type 2250 No: 2611593 Id: -
Microphone: Brüel & Kjær Type 4189 No: 2697054
Preamplifier: Brüel & Kjær Type ZC-0032 No: -
Supplied Calibrator: Brüel & Kjær Type 4231 No: 2626210
Software version: BZ7222 Version 2.1 Pattern Approval: PTB1.63-4046158
Instruction manual: BE1712-18

CUSTOMER

Enfonic Ltd
Tecpro House
IDA Business & Technology Park
Dublin

CALIBRATION CONDITIONS

Preconditioning: 4 hours at 23°C ± 3°C
Environment conditions: See actual values in Environmental conditions sections.

SPECIFICATIONS

The Sound Level Meter Brüel & Kjær Type 2250 has been calibrated in accordance with the requirements as specified in IEC61672-1:2002 class 1. Procedures from IEC 61672-3:2006 were used to perform the periodic tests. The accreditation assures the traceability to the international units system SI.

PROCEDURE

The measurements have been performed with the assistance of Brüel & Kjær Sound Level Meter Calibration System 3630 with application software type 7763 (version 4.9 - DB: 4.90) by using procedure 2250-4189.

RESULTS

Calibration Mode: Calibration as received.

The reported expanded uncertainty is based on the standard uncertainty multiplied by a coverage factor k = 2 providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with EA-4/02 from elements originating from the standards, calibration method, effect of environmental conditions and any short time contribution from the device under calibration.

Date of calibration: 2016-07-09 Date of issue: 2016-07-09

M. Önder
Calibration Technician

Susanne Jørgensen
Approved Signatory

Reproduction of the complete certificate is allowed. Parts of the certificate may only be reproduced after written permission.
CERTIFICATE OF CALIBRATION

No: CDK1310500 Page 1 of 10

CALIBRATION OF

Sound Level Meter: Brüel & Kjær Type 2250 No: 2626210 Id: -
Microphone: Brüel & Kjær Type 4189 No: 2785433
Preamplifier: Brüel & Kjær Type ZC-0032 No: 15085
Supplied Calibrator: Brüel & Kjær Type 4231 No: 2022652
Software version: BZ7222 Version 2.1 Pattern Approval: PTB1.63-4046158
Instruction manual: BE1712-18

CUSTOMER

Enfonic Ltd
Tecpro House
IDA Business & Technology Park
Dublin

CALIBRATION CONDITIONS

Preconditioning: 4 hours at 23°C ± 3°C
Environment conditions: See actual values in Environmental conditions sections.

SPECIFICATIONS

The Sound Level Meter Brüel & Kjær Type 2250 has been calibrated in accordance with the requirements as specified in IEC61672-1:2002 class 1. Procedures from IEC 61672-3:2006 were used to perform the periodic tests. The accreditation assures the traceability to the international units system SI.

PROCEDURE

The measurements have been performed with the assistance of Brüel & Kjær Sound Level Meter Calibration System 3630 with application software type 7763 (version 4.9 - DB: 4.90) by using procedure 2250-4189.

RESULTS

Calibration Mode: Calibration as received.

The reported expanded uncertainty is based on the standard uncertainty multiplied by a coverage factor k = 2 providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with EA-4/02 from elements originating from the standards, calibration method, effect of environmental conditions and any short time contribution from the device under calibration.

Date of calibration: 2015-07-21
Date of issue: 2015-07-21

Mikail Önder
Calibration Technician

Susanne Jørgensen
Approved Signatory

Reproduction of the complete certificate is allowed. Parts of the certificate may only be reproduced after written permission.
CERTIFICATE OF CALIBRATION

Date of issue: 06 August 2015
Certificate Number: CDK1505903

Brüel & Kjær

The Calibration Laboratory
Skodsbergvej 307, DK-2850 Nærum, Denmark
Tel: +45 45 800 500 Fax: +45 45 801 405
Email: uk3.service@bksv.com

CALIBRATION OF:

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>No.</th>
<th>Id.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sound Level Meter</td>
<td>Brüel & Kjær Type 2250</td>
<td>2690265</td>
<td>-</td>
</tr>
<tr>
<td>Microphone</td>
<td>Brüel & Kjær Type 4189</td>
<td>2748694</td>
<td></td>
</tr>
<tr>
<td>Associated Calibrator</td>
<td>Brüel & Kjær Type 4231</td>
<td>2389038</td>
<td></td>
</tr>
<tr>
<td>Calibrator Certificate</td>
<td>CDK1505835</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLM Software Version</td>
<td>BZ7225 Version 3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibrator Level</td>
<td>93.99 dB SPL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Date of calibration: 06 August 2015

CUSTOMER:

RPS Group Ltd.
Merve
G1 Galway
Ireland

CALIBRATION CONDITIONS:

Preconditioning: 4 hours at 23°C ± 3°C
Environment conditions: Air Temperature: 22.6 °C, Air Pressure: 101.6 kPa, Relative Humidity: 49.0 %RH

SPECIFICATIONS:

The Sound Level Meter Brüel & Kjær Type 2250 has been calibrated in accordance with the requirements as specified in BS7580: Part 1: 1997.

PROCEDURE:

The measurements have been performed with the assistance of Brüel & Kjær Sound Level Meter Calibration System 3630 with application software type 7763 (version 5.1 - DB: 4.60) by using procedure 2250-4189.

RESULTS:

Unless otherwise stated herein, the reported uncertainty is based upon a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with DANAK requirements. The uncertainties refer to the measured values only with no account being taken of the ability of the device under test to maintain its calibration.

Note: Calibration as received.
CERTIFICATE OF CALIBRATION

No: CDK1359578

No: 2818081 Id: -2820751

No: 2821415

No: 15083

Pattern Approval: PTB1.63-4055843 / 1.63-4055845

CUSTOMER

Enfonic Ltd
Tecpro House, IDA Business & Technology Park
Clonshaugh
Dublin 17
Ireland

CALIBRATION CONDITIONS

Preconditioning: 4 hours at 23°C ± 3°C

Environment conditions: See actual values in Environmental conditions sections.

SPECIFICATIONS

The Sound Level Meter Brüel & Kjær Type 2250 has been calibrated in accordance with the requirements as specified in IEC61672-1:2002 class 1. Procedures from IEC 61672-3:2006 were used to perform the periodic tests. The accreditation assures the traceability to the international units system SI.

PROCEDURE

The measurements have been performed with the assistance of Brüel & Kjær Sound Level Meter Calibration System 3630 with application software type 7763 (version 4.9 - DB: 4.90) by using procedure 2250-4189.

RESULTS

Calibration Mode: Calibration as received.

The reported expanded uncertainty is based on the standard uncertainty multiplied by a coverage factor k = 2 providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with EA-4/02 from elements originating from the standards, calibration method, effect of environmental conditions and any short time contribution from the device under calibration.

Date of calibration: 2015-12-03
Date of issue: 2015-12-03

Steen Vodstrup Andersen
Calibration Technician

Susanne Jørgensen
Approved Signatory

Reproduction of the complete certificate is allowed. Parts of the certificate may only be reproduced after written permission.
Certificate Number: 02685/3
Date of Issue: 3 May 2016

PERIODIC TEST OF A SOUND LEVEL METER to IEC 61672-3:2006

FOR:
Enfonic Ltd
Tecpro House
IDA Business & Technology Park
Clonshaugh
Dublin 17

FOR THE ATTENTION OF:
Gary Duffy

PERIODIC TEST DATE:
03/05/2016

TEST PROCEDURE:
CTP12 (Laboratory Manual)

Sound Level Meter Details

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Brüel & Kjær</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>2250</td>
</tr>
<tr>
<td>Serial number</td>
<td>3001734</td>
</tr>
<tr>
<td>Class</td>
<td>1</td>
</tr>
<tr>
<td>Hardware version</td>
<td>4.0</td>
</tr>
<tr>
<td>Software version</td>
<td>BZ7222 4.6.1</td>
</tr>
</tbody>
</table>

Associated Items

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Microphone</th>
<th>Preamplifier</th>
<th>Calibrator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Brüel & Kjær</td>
<td>Brüel & Kjær</td>
<td>Brüel & Kjær</td>
</tr>
<tr>
<td>Serial Number</td>
<td>4189</td>
<td>24016</td>
<td>2465766</td>
</tr>
<tr>
<td>Calibrator Adaptor</td>
<td>3022867</td>
<td>UC0210</td>
<td></td>
</tr>
</tbody>
</table>

Test Engineer (initial): GP
Name: Gary Phillips

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to the units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full except with the prior written approval of the issuing laboratory.
Certificate of Calibration
Issued by University of Salford (Acoustics Calibration Laboratory)
UKAS ACCREDITED CALIBRATION LABORATORY NO. 0801

Certificate Number: 02685/3 Date of Issue: 3 May 2016

Procedures from IEC 61672-3: 2006 and TPS 49 Edition 2 June 2009 were used to perform the periodic tests. Manufacturer’s instruction manual was marked as follows: B&K 2250 BE 1712-15 April 2007 from hardware version 1.1.

Adjustment data used to adjust the sound levels indicated in response to the application of a multi-frequency sound calibrator to sound levels equivalent to those that would be indicated in response to plane, progressive sound waves were obtained from the manufacturer’s instruction manual referred to in this certificate. The sound level meter calibration check frequency is 1000 Hz, the reference sound pressure level is 94 dB. As this instrument only has a single range, this range is the reference level range.

The environmental conditions in the laboratory at the start of the test were:
Static pressure 101.863 kPa ± 0.015 kPa, air temperature 22.3 °C ± 0.3 °C, relative humidity 36.7 % ± 1.7%.

The initial response of the instrument to application of the associated sound calibrator was 93.8 dB (C). The instrument was then adjusted to indicate 94.0 dB (C). This indication was obtained from the calibration certificate of the calibrator, 02685/1 and information in the manufacturer’s instruction manual specified in this certificate, when the instrument is configured as follows; Input: Top Socket, Transducer: 4189, Sound Field Correction: Free-field, Windscreen Auto Detect: Off, Windscreen Correction: None. The instrument was calibrated without a windshield. Consult manufacturer’s instructions if using a windshield.

With the microphone installed the level of self-generated noise was:

A: 17.2 dB*
* Under-range indicated on instrument display.

With the microphone replaced by the electrical input device specified in the manufacturer’s instruction manual, the levels of self-generated noise were:

A: 13.2 dB*
B: 12.3 dB*
C: 13.4 dB*
ZLF-Normal: 18.5 dB*
ZLF-Extended: 23.2 dB*
* Under-range indicated on instrument display.

The environmental conditions in the laboratory at the end of the test were:
Static pressure 101.951 kPa ± 0.015 kPa, air temperature 22.8 °C ± 0.3 °C, relative humidity 37.0 % ± 1.7%.

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to the units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full except with the prior written approval of the issuing laboratory.
The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3:2006, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent testing organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2003, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2002, the sound level meter submitted for testing conforms to the class 1 requirements of IEC 61672-1:2002.

The microphone corrections applied as specified in 12.6 of IEC 61672-3:2006 were obtained from a frequency response measured by this Laboratory using the electrostatic actuator method. This response in isolation is not covered by our UKAS accreditation.

Instruments used in the verification procedure were traceable to National Standards. The multi-frequency calibrator method was employed in the acoustical tests of a frequency weighting.

The uncertainty evaluation has been carried out in accordance with UKAS requirements. All measurement results are retained at the acoustic calibration laboratory for at least four years.
CERTIFICATE OF CALIBRATION

No: CDK14010525
Page 1 of 10

CALIBRATION OF

Sound Level Meter: Brüel & Kjær Type 2250
No: 2580156
Id: -

Microphone: Brüel & Kjær Type 4950
No: 2698718

Preamplifier: Brüel & Kjær Type ZC-0032
No: 17445

Supplied Calibrator: Brüel & Kjær Type 4231
No: 2343370

Software version: BZ7222 Version 2.1
Instruction manual: BE1712-18

Pattern Approval: PTB1.63-4046158

CUSTOMER

Enfonic Ltd
Tecpro House
IDA Business & Technology Park
Dublin

CALIBRATION CONDITIONS

Preconditioning: 4 hours at 23°C ± 3°C
Environment conditions: See actual values in Environmental conditions sections.

SPECIFICATIONS

The Sound Level Meter Brüel & Kjær Type 2250 has been calibrated in accordance with the requirements as specified in IEC61672-1:2002 class 1. Procedures from IEC 61672-3:2006 were used to perform the periodic tests. The accreditation assures the traceability to the international units system SI.

PROCEDURE

The measurements have been performed with the assistance of Brüel & Kjaer Sound Level Meter Calibration System 3630 with application software type 7763 (version 4.9 - DB: 4.90) by using procedure 2250-4189.

RESULTS

Calibration Mode: Calibration as received.

The reported expanded uncertainty is based on the standard uncertainty multiplied by a coverage factor k = 2 providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with EA-4/02 from elements originating from the standards, calibration method, effect of environmental conditions and any short time contribution from the device under calibration.

Date of calibration: 2015-07-21

M. Önder
Calibration Technician

Susanne Jørgensen
Approved Signatory

Date of issue: 2015-07-21

Reproduction of the complete certificate is allowed. Parts of the certificate may only be reproduced after written permission.
CERTIFICATE OF CALIBRATION

CALIBRATION OF

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>No.</th>
<th>Id:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sound Level Meter</td>
<td>Brüel & Kjær Type 2250</td>
<td>2638881</td>
<td>-</td>
</tr>
<tr>
<td>Microphone</td>
<td>Brüel & Kjær Type 4189</td>
<td>2846376</td>
<td>-</td>
</tr>
<tr>
<td>Preamplifier</td>
<td>Brüel & Kjær Type ZC-0032</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Supplied Calibrator</td>
<td>Brüel & Kjær Type 4231</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Software version</td>
<td>BZ7222 Version 2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instruction manual</td>
<td>BE1712-18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CUSTOMER

Enfonic Ltd
Tecpro House
IDA Business & Technology Park
Dublin

CALIBRATION CONDITIONS

- Preconditioning: 4 hours at 23°C ± 3°C
- Environment conditions: See actual values in **Environmental conditions** sections.

SPECIFICATIONS

The Sound Level Meter Brüel & Kjær Type 2250 has been calibrated in accordance with the requirements as specified in IEC61672-1:2002 class 1. Procedures from IEC 61672-3:2006 were used to perform the periodic tests. The accreditation assures the traceability to the international units system SI.

PROCEDURE

The measurements have been performed with the assistance of Brüel & Kjær Sound Level Meter Calibration System 3630 with application software type 7763 (version 4.9 - DB: 4.90) by using procedure 2250-4189.

RESULTS

Calibration Mode: **Calibration as received**.

The reported expanded uncertainty is based on the standard uncertainty multiplied by a coverage factor 2 providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with EA-4/02 from elements originating from the standards, calibration method, effect of environmental conditions and any short time contribution from the device under calibration.

Date of calibration: 2016-01-21
Date of issue: 2016-01-21

Mikhail Önder
Calibration Technician

Susanne Jørgensen
Approved Signatory

Reproduction of the complete certificate is allowed. Parts of the certificate may only be reproduced after written permission.
CERTIFICATE OF CALIBRATION
No: CDK1410515

CALIBRATION OF

Sound Level Meter: Brüel & Kjær Type 2250
Microphone: Brüel & Kjær Type 4950
Preamplifier: Brüel & Kjær Type ZC-0032
Supplied Calibrator: Brüel & Kjær Type 4231
Software version: BZ7222 Version 2.1
Instruction manual: BE1712-18

No: 2654662 Id: - 2654662
No: 2737145
No: 6822
No: 2123002

Pattern Approval: PTB1.63-4046158

CUSTOMER
Enfonic Ltd
Tekpro House
IDA Business & Technology Park
Dublin

CALIBRATION CONDITIONS
Preconditioning: 4 hours at 23°C ± 3°C
Environment conditions: See actual values in Environmental conditions sections.

SPECIFICATIONS
The Sound Level Meter Brüel & Kjær Type 2250 has been calibrated in accordance with the requirements as specified in IEC61672-1:2002 class 1. Procedures from IEC 61672-3:2006 were used to perform the periodic tests. The accreditation assures the traceability to the international units system SI.

PROCEDURE
The measurements have been performed with the assistance of Brüel & Kjær Sound Level Meter Calibration System 3630 with application software type 7763 (version 4.9 - DB: 4.90) by using procedure 2250-4189.

RESULTS
Calibration Mode: Calibration as received.
The reported expanded uncertainty is based on the standard uncertainty multiplied by a coverage factor k = 2 providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with EA-4/02 from elements originating from the standards, calibration method, effect of environmental conditions and any short time contribution from the device under calibration.

Date of calibration: 2015-07-21
Date of issue: 2015-07-21

M. Önder
Calibration Technician

Susanne Jørgensen
Approved Signatory

Reproduction of the complete certificate is allowed. Parts of the certificate may only be reproduced after written permission.
CERTIFICATE OF CALIBRATION

No: CDK1359391

Page 1 of 10

CALIBRATION OF

Sound Level Meter: Brüel & Kjær Type 2250
Microphone: Brüel & Kjær Type 4950
Preamplifier: Brüel & Kjær Type ZC-0032
Supplied Calibrator: Brüel & Kjær Type 4231
Software version: BZ7222 Version 2.1
Instruction manual: BE1712-18

No: 3000855 Id: 2626210
No: 2778445
No: 16743
No: 2626210

CUSTOMER

Enfonic Ltd
Tecpro House
IDA Business & Technology Park
Dublin

CALIBRATION CONDITIONS

Preconditioning: 4 hours at 23°C ± 3°C
Environment conditions: See actual values in Environmental conditions sections.

SPECIFICATIONS

The Sound Level Meter Brüel & Kjær Type 2250 has been calibrated in accordance with the requirements as specified in IEC61672-1:2002 class 1. Procedures from IEC 61672-3:2006 were used to perform the periodic tests. The accreditation assures the traceability to the international units system SI.

PROCEDURE

The measurements have been performed with the assistance of Brüel & Kjær Sound Level Meter Calibration System 3630 with application software type 7763 (version 4.9 - DB: 4.90) by using procedure 2250-4189.

RESULTS

Calibration Mode: Calibration as received.
The reported expanded uncertainty is based on the standard uncertainty multiplied by a coverage factor k = 2 providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with EA-4/02 from elements originating from the standards, calibration method, effect of environmental conditions and any short time contribution from the device under calibration.

Date of calibration: 2015-11-21
Date of issue: 2015-11-21

M. Önder
Calibration Technician

Susanne Jørgensen
Approved Signatory

Reproduction of the complete certificate is allowed. Parts of the certificate may only be reproduced after written permission.
CERTIFICATE OF CALIBRATION

No: CDK1359688 Page 1 of 10

CALIBRATION OF

Sound Level Meter: Brüel & Kjær Type 2250 No: 3001350 Id: - 3001350
Microphone: Brüel & Kjær Type 4950 No: 2778447
Preampilifier: Brüel & Kjær Type ZC-0032 No: 16741
Supplied Calibrator: Brüel & Kjær Type 4231 No: 3005345
Software version: BZ7222 Version 2.1 Pattern Approval: PTB1.63-4046158
Instruction manual: BE1712-18

CUSTOMER

Enfonic Ltd
Tecpro House
IDA Business & Technology Park
Dublin

CALIBRATION CONDITIONS

Preconditioning: 4 hours at 23°C ± 3°C
Environment conditions: See actual values in Environmental conditions sections.

SPECIFICATIONS

The Sound Level Meter Brüel & Kjær Type 2250 has been calibrated in accordance with the requirements as specified in IEC61672-1:2002 class 1. Procedures from IEC 61672-3:2006 were used to perform the periodic tests. The accreditation assures the traceability to the international units system SI.

PROCEDURE

The measurements have been performed with the assistance of Brüel & Kjær Sound Level Meter Calibration System 3630 with application software type 7763 (version 4.9 - DB: 4.90) by using procedure 2250-4189.

RESULTS

Calibration Mode: Calibration as received.
The reported expanded uncertainty is based on the standard uncertainty multiplied by a coverage factor k = 2 providing a level of confidence of approximately 95 %. The uncertainty evaluation has been carried out in accordance with EA-4/02 from elements originating from the standards, calibration method, effect of environmental conditions and any short time contribution from the device under calibration.

Date of calibration: 2015-12-12 Date of issue: 2015-12-12

M. Önder
Calibration Technician

Susanne Jorgensen
Approved Signatory

Reproduction of the complete certificate is allowed. Parts of the certificate may only be reproduced after written permission.
CERTIFICATE OF CALIBRATION

No: CDK1359678 Page 1 of 10

CALIBRATION OF

Sound Level Meter: Brüel & Kjær Type 2250 No: 3002365 Id: - 3002365
Microphone: Brüel & Kjær Type 4950 No: 2807020
Pre-amplifier: Brüel & Kjær Type ZC-0032 No: 15085
Supplied Calibrator: Brüel & Kjær Type 4231 No: 3005345
Software version: BZ7222 Version 2.1 Pattern Approval: PTB1.63-4046158
Instruction manual: BE1712-18

CUSTOMER

Enfonic Ltd
Tecpro House
IDA Business & Technology Park
Dublin

CALIBRATION CONDITIONS

Preconditioning: 4 hours at 23°C ± 3°C
Environment conditions: See actual values in Environmental conditions sections.

SPECIFICATIONS

The Sound Level Meter Brüel & Kjær Type 2250 has been calibrated in accordance with the requirements as specified in IEC61672-1:2002 class 1. Procedures from IEC 61672-3:2006 were used to perform the periodic tests. The accreditation assures the traceability to the international units system SI.

PROCEDURE

The measurements have been performed with the assistance of Brüel & Kjær Sound Level Meter Calibration System 3630 with application software type 7763 (version 4.9 - DB: 4.90) by using procedure 2250-4189.

RESULTS

Calibration Mode: Calibration as received.

The reported expanded uncertainty is based on the standard uncertainty multiplied by a coverage factor k = 2 providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with EA-4/02 from elements originating from the standards, calibration method, effect of environmental conditions and any short time contribution from the device under calibration.

Date of calibration: 2015-12-12

Date of issue: 2015-12-12

M. Önder
Calibration Technician

Susanne Jørgensen
Approved Signatory

Reproduction of the complete certificate is allowed. Parts of the certificate may only be reproduced after written permission.
CERTIFICATE OF CALIBRATION

CALIBRATION OF

Sound Level Meter: Brüel & Kjær Type 2250 Light No: 3002367 Id: -
Microphone: Brüel & Kjær Type 4950 No: 2778447
Preamplifier: Brüel & Kjær Type ZC-0032 No: 17907
Supplied Calibrator: Brüel & Kjær Type 4231 No: 2460008
Software version: BZ7133 Version 4.3.2 Pattern Approval: PTB
Instruction manual: BE1853-11

CUSTOMER

Enfonic Ltd
Taeacro House
IDA Business & Technology Park
Clonsough
17 Dublin
Ireland

CALIBRATION CONDITIONS

Preconditioning: 4 hours at 23°C ± 3°C
Environment conditions: See actual values in Environmental conditions sections.

SPECIFICATIONS

The Sound Level Meter Brüel & Kjær Type 2250 Light has been calibrated in accordance with the requirements as specified in IEC61672-1:2002 class 1. Procedures from IEC 61672-3:2006 were used to perform the periodic tests. The accreditation assures the traceability to the international units system SI.

PROCEDURE

The measurements have been performed with the assistance of Brüel & Kjaer Sound Level Meter Calibration System 3630 with application software type 7763 (version 5.1 - DB: 5.10) by using procedure B&K proc 2250-L-4950 (IEC61672).

RESULTS

Calibration Mode: Calibration as received.

The reported expanded uncertainty is based on the standard uncertainty multiplied by a coverage factor k = 2 providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with EA-4/02 from elements originating from the standards, calibration method, effect of environmental conditions and any short time contribution from the device under calibration.

Date of calibration: 2015-06-09
Date of issue: 2015-06-09

Jonas Johannaensen
Calibration Technician

Morten Høngård Hansen
Approved Signatory
CERTIFICATE OF CALIBRATION

No: CDK1360941 Page 1 of 10

CALIBRATION OF

Sound Level Meter: Brüel & Kjær Type 2250 No: 3006895 Id: - 3006895
Microphone: Brüel & Kjær Type 4952 No: 2550918
Preamplifier: Brüel & Kjær Type ZC-0032 No: 16530
Supplied Calibrator: Brüel & Kjær Type 4231 No: 2460008
Software version: BZ7222 Version 2.1 Pattern Approval: PTB1.63-4046158
Instruction manual: BE1712-18

CUSTOMER

Enfonic Ltd
Tecpro House
IDA Business & Technology Park
Dublin

CALIBRATION CONDITIONS

Preconditioning: 4 hours at 23°C ± 3°C
Environment conditions: See actual values in Environmental conditions sections.

SPECIFICATIONS

The Sound Level Meter Brüel & Kjær Type 2250 has been calibrated in accordance with the requirements as specified in IEC61672-1:2002 class 1. Procedures from IEC 61672-3:2006 were used to perform the periodic tests. The accreditation assures the traceability to the international units system SI.

PROCEDURE

The measurements have been performed with the assistance of Brüel & Kjær Sound Level Meter Calibration System 3630 with application software type 7763 (version 4.9 - DB: 4.90) by using procedure 2250-4189.

RESULTS

Calibration Mode: Calibration as received.

The reported expanded uncertainty is based on the standard uncertainty multiplied by a coverage factor k = 2 providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with EA-4/02 from elements originating from the standards, calibration method, effect of environmental conditions and any short time contribution from the device under calibration.

Date of calibration: 2016-02-14 Date of issue: 2016-02-14

M. Önder
Calibration Technician

Susanne Jorgensen
Approved Signatory

Reproduction of the complete certificate is allowed. Parts of the certificate may only be reproduced after written permission.
CERTIFICATE OF CALIBRATION

No: CDK1505904

CALIBRATION OF

Sound Level Meter: Briel & Kjaer Type 2260
Microphone: Briel & Kjaer Type 4193

No: 2076252 Id: -
No: 2812159

CUSTOMER

RPS Group Ltd.
Mervue
G1 Galway
Ireland

CALIBRATION CONDITIONS

Preconditioning: 4 hours at 23°C ± 3°C

SPECIFICATIONS

The Sound Level Meter Briel & Kjaer Type 2260 has been calibrated in accordance with the requirements as specified in IEC 60651 and 60804 type 1. The accreditation assures the traceability to the international units system SI.

PROCEDURE

The measurements have been performed with the assistance of Briel & Kjaer Sound Level Meter Calibration System 3630 with application software type 7763 (version 5.1 - DB: 5.10) by using procedure B&K proc 2260-4193-BZ7210-V2.

RESULTS

Calibration Mode: Calibration as received.

The reported expanded uncertainty is based on the standard uncertainty multiplied by a coverage factor k = 2 providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with EA-4/02 from elements originating from the standards, calibration method, effect of environmental conditions and any short time contribution from the device under calibration.

Date of calibration: 2015-08-10
Date of issue: 2015-08-11

Jonas Johannessen
Calibration Technician

Susanne Jørgensen
Approved Signatory

Reproduction of the complete certificate is allowed. Parts of the certificate may only be reproduced after written permission.
CERTIFICATE OF CALIBRATION

No: CDK1505835

Page 1 of 4

CALIBRATION OF

Calibrator: Brüel & Kjær Type 4231

½ Inch adaptor: Brüel & Kjær Type UC-0210

Pattern Approval: PTB-1.61-4057176

No: 2389038 Id: -

CUSTOMER

RPS Group Ltd.
Mervue
G1 Galway
Ireland

CALIBRATION CONDITIONS

Preconditioning: 4 hours at 23°C ± 3°C

Environment conditions: Pressure: 101.29 kPa, Humidity: 47 % RH, Temperature: 23 °C.

SPECIFICATIONS

The Calibrator Brüel & Kjær Type 4231 has been calibrated in accordance with the requirements as specified in IEC60942:2003 Annex B Class 1. The accreditation assures the traceability to the international units system SI.

PROCEDURE

The measurements have been performed with the assistance of Brüel & Kjær acoustic calibrator calibration application software Type 7794 (version 2.5) by using procedure P_4231_D07.

RESULTS

Calibration Mode: Calibration as received.

The reported expanded uncertainty is based on the standard uncertainty multiplied by a coverage factor k = 2 providing a level of confidence of approximately 95 %. The uncertainty evaluation has been carried out in accordance with EA-4/02 from elements originating from the standards, calibration method, effect of environmental conditions and any short time contribution from the device under calibration.

Date of calibration: 2015-08-04

Date of issue: 2015-08-04

Susanne Nygaard
Calibration Technician

Morten Høngård Hansen
Approved Signatory

Reproduction of the complete certificate is allowed. Parts of the certificate may only be reproduced after written permission.
CERTIFICATE OF CALIBRATION

CALIBRATION OF

Calibrator: Brüel & Kjær Type 4231
1/4 Inch adaptor: Brüel & Kjær Type UC-0210
Pattern Approval: PTB-1.61-4057176

No: CDK1605829

CUSTOMER

RPS Group Ltd.
Meruve
G1 Galway
Ireland

No: 2389038 Id:

CALIBRATION CONDITIONS

Preconditioning: 4 hours at 23°C ± 3°C

SPECIFICATIONS

The Calibrator Brüel & Kjær Type 4231 has been calibrated in accordance with the requirements as specified in IEC60942:2003 Annex B Class 1. The accreditation assures the traceability to the international units system SI.

PROCEDURE

The measurements have been performed with the assistance of Brüel & Kjær acoustic calibrator calibration application software Type 7794 (version 2.5) by using procedure P_4231_D07.

RESULTS

Calibration Mode: Calibration as received.

The reported expanded uncertainty is based on the standard uncertainty multiplied by a coverage factor k = 2 providing a level of confidence of approximately 95 %. The uncertainty evaluation has been carried out in accordance with EA-4/02 from elements originating from the standards, calibration method, effect of environmental conditions and any short time contribution from the device under calibration.

Date of calibration: 2016-08-30
Date of issue: 2016-08-30

Susanne Jørgensen
Calibration Technician

Morten Hengård Hansen
Approved Signatory

Reproduction of the complete certificate is allowed. Parts of the certificate may only be reproduced after written permission.